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An integrated theoretical and experimental investigation of flow in the
throat region of unconventional, annular, supersonic nozzles was conducted.
The theoretical analysis consists of the formulation and development of an
approximate series expansion solution to the inviscid, irrotational governing
equations. The resulting solution provides a direct means of analyzing the
throat flowfields in a variety of two-dimensional nozzle configurations includ-

j ing axisymmetric, annular, and planar nozzles. A major advantage of the
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solution is the speed and reliability of its numerical implementation, making
feasible parametric studies and iterative calculations.

Flowfield static pressure measurements were obtained for four nozzle
configurations including an axisymmetric, Laval nozzle and three annular ones.
Half-section cylindrical models were constructed and mounted on a splitter
plate whose surface corresponds to a plane of symmetry for the axisymmetric
geometries under consideration. Readings from a grid of pressure taps arranged
on the splitter plate allowed the determination of the static pressure fields
in the nozzle throats. For all four cases tested, it was found that the
agreement between the theoretical and experimental results is quite good
through a significant region of the throat. Only near the bounding walls in
the throat inlet region was there a noticeable discrepancy for some of the
cases.
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TNOMEtJCLATURE

Symbol s Meani no

a speed of sound

I a* critical speed of sound

a ,aO  x-coordinates of centers of curvature of inner and outer
wall contours, Appendix A

A area

AA' ,A functions of y in first order series expansion solution,
Eqs. (111-64), (111-60), and (111-63)

bi ,b0  y-coordinates of centers of curvature of inner and outer
wall contours, Appendix A

BO ,BI ,B2 ,B3, constants in first order series expansion solution,
B4 , B5  Eqs. (111-66), (111-62), (111-61), (111-65), (111-67),

(111-68)

CD  discharge or flow coefficient defined in Eq. (111-79)

CDI ,C D2,CD3 discharge coefficient constants defined in Eq. (111-80)

C',C,,C I ,C2 ,C2  functions of y in second order series expansion solution,
0Eqs. (111-69) and (111-70)

d throat half-height, defined as throat radius for conven-
tional axisymmetric nozzles and distance between inner
and outer throat wall locations for annular nozzles

dh  static hole diameter, Fig. IV.16

D0 ,DI,D2  constants in second order series expansion solution,
Eq. (111-70)

E , ,j, 2 functions of y in third order series expansion solution,
i2'" .3 Eqs. (111-71) and (111-72)

f f2,f 3 right hand sides of Eq. (111-40) defined in Eqs. (111-41)
and (111-42)

F wall shear force, Eq. (IV-5)

F09F lF2,F3  constants in third order series expansion solution
IEq. (111-72)
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Symbols Meaning

g,h equations of inner and outer nozzle wall contours in the
local x-y coordinate system, Fig. I11.1

g1 ,h1 ,g2 ,h2, dimensionless quantities defined in Eq. (111-35)
g3 ,h3

G,H equations of inner and outer nozzle wall contours in the

cylindrical R-Z coordinate system, Fig. III.

j, average, symmetric throat slope defined in Eq. (A-l0)

static hole depth, Fig. IV.16

M Mach number

Ni* dimensionless velocity ratio defined in Eq. (111-75)

N number of terms to be included from series expansion
solution

used to denote physical order of magnitude

p static pressure

PO stagnation pressure

R radial coordinate in cylindrical system

R wall radius of curvature non-dimensionalized with respect
C to throat half-height

Re+ Reynolds number based on static hole diameter and fric-
tion velocity, Eq. (IV-8)

Re2d Reynolds number based on sonic conditions and throat
height, Re d z p*V*2d/w*, where V* is the magnitude of
the velocity vector at M = 1

u,v dimensionless velocity components in x-y coordinate
system defined in Eqs. (111-5) and (111-6), Fig. III.

DIV transonic perturbation velocity components defined in
Eqs. (llI-10) and (III-II)

u1v 1'9u ,v 2] transonic perturbation velocity components defined by
u 3,v3 expansions in Eqs. (111-36) and (111-37)
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Sybo I s Meani ng

1 U,V velocity components in cylindrical R-Z coordirate, 'e

Fig. III.I

i U(F) uncertainty of the function F, defined in Eq. <!V-l'

x,y local coordinates non-dimensionalized with respect to
throat half-height and oriented such that y-axis lies
along minimum area cross-section and orijin is en the
axis of symmetry, Fig. 111.1

Y ,y y-coordinates of inner and outer throat wall locations

z stretched axial coordinate defined by Eq. (111-35)

Z axial coordinate in cylindrical system

Z* Z-coordinate of origin of x-y coordinate system,
Fig. I1.1

Greek symbol M eaning

inclination of x-axis from Z axis of symmetry, positive
counterclockwise, Fig. 111.1

dimensionless quantity defined in EQ. (111-35)

I specific heat ratio

grid spacing in finite difference approximations

expansion parameter defined in Eq. (111-22)

parameter in expansion variable definition, Eq. (111-22)

angle of inclination of velocity vector from x-axis,g positive counterclockwise

absolute viscosity

v kinematic viscosity, v E ;/,

p density

I wall shear stress0

W parameter equal to zero for planar configurations and
one for axisymmetric configurations

I
I



Subscripts ,eanin,

C curvature

pertaining to inner and outer wail

Superscripts Neaning

IV. used to denote order of differentiation

average

eva)uated at sonic conditions
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I I. INTRODULTIONJ

There are a number of practical applications for which annular, super-

sonic nozzles are used. Among these are turbofan bypass nozzles, as well

I as unconventional propulsion nozzles such as the spike, plug, and expansion-

Ideflection designs. The purpose of the latter group of nozzles, which all

contain centerbodies, is to obtain improved thrust performance over the

conventional converging-diverging configuration at off-design operating

conditions. Another application of annular supersonic nozzles which has

recently been proposed [11W, is the use of coaxial, coflowing supersonic

streams in order to obtain jet noise suppression. The advantage of this

configuration is that the complex, interacting two-stream flowfield allows

the suppression of noise-generation mechanisms with a minimal thrust

penalty, as opposed to the insertion of mechanical devices into the exhaust

flow.

However, the primary motivation for this work is the supersonic-

supersonic ejector, Fig. 1.1, whereby an energetic, coflowing, supersonic,

primary stream is used to pump a low pressure, supersonic, secondary stream.

This device has applications, for example, in establishing and maintaining

supersonic flow conditions in the cavity region of chemical lasers [2,3] or

as a means of augmenting the pressure recovery for supersonic wind tunnel

applications (4-7].

From previous experience with the subsonic-supersonic ejector (8,9], for

which the secondary stream is subsonic, it is known that the overall ejector

'Numbers in brackets refer to entries in REFERENCES.

I
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operating characteristics are controlled to a great extent by the interaction

of the primary and secondary streams immediately downstream from their

point of confluence. Thus, any detailed investigation of the supersonic-

supersonic ejector flowfield should naturally concentrate on this "initial

interaction region." For example,.in the preliminary investigation of

Guile, et al. [10], a two-dimensional, inviscid, rotational method of

characteristics technique was used to analyze the flow in this region start-

ing at the ejector inlet station. However, in this adverse pressure gradient

situation, it is recognized that the boundary layer and viscous shear layer

flows near the primary-secondary confluence should be investigated. The

experiments of Mikkelsen, et al. [21 showed severe pressure recovery losses

for the constant area supersonic-supersonic ejector due to separation of the

secondary stream as the static pressure of the primary was increased above

that of the secondary at their confluence point. It is also known that in

the hot-flow, chemical laser application the boundary layers of the secondary,

laser flow are extremely thick at the ejector station. Therefore, any

detailed calculations of the primary-secondary flowfield interactions should

include these viscous effects and preferably should be initiated upstream of

the ejector inlet so that the characteristics of the boundary layers along

the walls of the primary and secondary streams can be well established

before the confluence point is reached.

One natural place to start these calculations, particularly for the

primary stream, is in the throat region of the supply nozzles using an

appropriate transonic throat analysis. Since the Reynolds number of the

primary stream is generally quite large and since the streamwise wall

LI
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pressure gradient in the throat region is favorable, the inviscid assumption

may be made in the development of the throat analyses. The results can then

be used as initial conditions to start the coupled inviscid/boundary layer

Icomputations which proceed downstream through the remainder of the ejector
g flowfield.

For both the chemical laser and wind tunnel applications of the

I supersonic-supersonic ejector, the geometry at the ejector may be either

two-dimensional plane or axisymmetric. Hence, transonic analyses for

nozzles with plane, axisymmetric-no centerbody, or annular configurations

may be required to initialize the ejector flowfield calculations. In

particular, if the ejector sketched in Fig. 1.1 is taken as axisymmetric,

the primary supply nozzle is an annular one with a small relative distance

from the axis of symmetry to the nozzle when non-dimensionalized with

respect to the throat height. However, if the primary stream is somehow

centrally submerged in the supersonic secondary, for example by a strut sup-

port arrangement, its supply nozzle is a conventional axisymmetric one.

I Plane configurations for the supersonic-supersonic ejector have also been

proposed and studied [10].

The objective of this study is twofold. First it is desired to develop

an analytical technique which provides an accurate description of the

transonic throat flowfield for a wide variety of two-dimensional nozzle

configurations including those mentioned previously. Although the analysis

is to be applicable to as wide a region as possible in the nozzle throat,

its main intent is to establish an initial value line for starting the

marching-type computations, e.g., method of characteristics, for the

I
I
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supersonic portion of the flowfield. Also, since the implementation of such

transonic analyses is invariably numerical, it is desired that the solution

be numerically fast and reliable so that parametric studies or iterative

calculations, as might occur in nozzle design situations, can be made in an

efficient and low-cost manner. The second objective is to provide further

insight into the characteristics of transonic throat flows by an experi-

mental investigation of a number of configurations including conventional

axisynmetric and annular ones. Comparison of the theoretical and experi-

mental results then allows conclusions to be drawn regarding the limits of

applicability of the analysis and suggests possible refinements of it.

As will be discussed further in the next chapter, no analytical tech-

niques are known to exist which contain all of the desired features just

outlined. In addition, experimental information concerning transonic

throat flows is extremely sparse, particularly for axisymmetric geometries.

This investigation is intended to provide additional information in these

areas.

A&
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11. LITERATURE REVIEW

The subject of transonic flow in nozzles and ducts has been studied

for well over a hundred years, dating from the converging nozzle studies of

Navier [111 in 1829 and St. Venant and Wantzel [12) in 1839. During this

f period, many techniques have been developed for investigating nozzle thrcat

flows as the state of understanding of this topic has been advanced. The

large majority of the contributions in this area are theoretical in nature

and apply to the conventional two-dimensional plane and axisymmetric con-

figurations, since study of annular nozzles has been motivated by the

relatively recent development of devices such as the plug and expansion-

deflection nozzles, the supersonic-supersonic ejector, etc. Because the

annular configuration is of prime importance in this investigation, the

purpose of the present chapter is to review those papers dealing explicitly

with this configuration and to summarize the major contributions to the

general methods which have been developed for throat flow analysis. The

survey of Hall and Sutton (131 provides a useful review of early work while

the more recent surveys of Flack and Thompson [14] and Brown and Hamilton

[15) consider newer developments in this area.

A. ANALYTICAL

One of the fundamental difficulties involved with the theoretical solu-

tion of most fluid flow problems is the basic nonlinear nature of the govern-

ing equations. Further complicating the analysis of steady transonic flows

is the fact that in the subsonic portions of the flowfield the equations are

of elliptic type while in the supersonic portions they are of hyperbolic

7'
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type. The mixed, nonlinear nature of the equations describing transonic

nozzle throat flows makes the solution of these problems by both analytical

and numerical techniques difficult at best. However, several methods of

varying degrees of accuracy and usability have been developed. Those to

be reviewed in this section have been divided into the following categories:

indirect techniques, series expansion methods, time dependent numerical

techniques, and other methods.

1. Indirect Techniques

In the indirect or inverse methods, the velocity distribution is

assumed along a reference streamline, such as the nozzle centerline, the

flowfield is calculated by some, usually approximate, technique, and then

in the inviscid approximation, any other streamline can be taken as a

nozzle wall. Therefore, indirect techniques can be applied only to the

nozzle design problem and cannot, without iteration, be applied to the

direct problem of calculating the flowfield in a nozzle with given wall

contours.

Among the earliest attempts at analyzing the flow in the throat of a

plane converging-diverging nozzle was that of Meyer [16]. He assumed that

the velocity along the axis increased linearly and substituted a double

power series expansion in the coordinates into the perturbation potential

equation. The coefficients up to and including the sixth order terms were

obtained from which the characteristics of the flowfield were deduced.

Another early solution technique which was applied to nozzle flow

analyses is the hodograph method developed successively by Lighthill [17,18],

Ahl
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Frankl [19], and Cherry [20-22]. In this method the hodograph equations,

which employ the velocity components as independent variables, are used.

These equations are linear, but the solution is complicated by the fact

that over a portion of the supersonic flowfield the mapping from the hodo-

graph plane to the physical plane is not one-to-one. Cherry [20] was able

to devise a transformation which provides a single-valued solution over the

entire plane and later [21,221 showed how superposition could be used to

obtain solutions for realistic nozzle flows. Major drawbacks of the hodo-

graph method are that it is applicable only to the planar case and that

practical calculations appear to be quite'complicated.

An early publication dealing with annular nozzles is that of Lord

[23] who considered a supersonic nozzl with a cylindrical centerbody. In

his inverse technique, two orders of solution were obtained by assuming that

the velocity along the cylinder surface increases linearly in the streamwise

direction for the first order solution and quadratically for the second

order. As noted by Lord, the solutions for the annular case are much more

f complicated than for the limiting cases of axisymmetric and plane nozzles

for which the centerbody diameter approaches zero and the throat diameter,

respectively. Lord used his throat flowfield results to obtain a starting

line for method of characteristics nozzle design computations.

One of the more well known indirect techniques was developed by Hopkins

and Hill [24) who used the Friedrichs formulation to obtain the flowfields

in axisymmetric nozzles with a small wall radius of curvature at the throat.

The dependent variables were expanded as power series in the stream function

so that the flowfield could be found from the prescribed velocity

i



distribution along the axis by solving for the series coefficients. A corre-

lation was developed between a one-dimensional "reference boundary" and the

computed boundary to facilitate the solution of the direct problem of

analyzing nozzles with specified wall contours. The authors found that the

most significant geometric parameter affecting the flow in the throat is the

wall radius of curvature at the throat and that the inlet angle of the con-

vergent section is not important unless this radius of curvature is less

than the throat radius. In a later publication [25], Hopkins and Hill

extended their method, with corrections by Morden and Farquhar [26], to the

case of unconventional, annular nozzles inclined at arbitrary angles to the

axis of symmetry. Their method assumes, however, the existence of a

straight reference streamline along which the velocity is specified; this

is not necessarily the case in the direct problem. Also, because of the

asymmetry of the streamlines about the reference streamline, no correlations

were obtained between reference and computed boundaries. For analysis of

given nozzles, iterations on a computer are suggested.

Norton [27] developed a somewhat different inverse technique for con-

ventional axisymmetric nozzles. In his method, the Euler equations, includ-

ing the effects of rotationality and swirl, are first transformed by intro-

ducing the stream function and a stretched axial coordinate; these

transformed equations are then numerically integrated outward from the given

velocity distribution along the axis. Norton presents some calculated

results, which required approximately two minutes of Univac 1108 time, but

emphasizes that the method is not suited to the problem of analyzing given

nozzle contours.

oA M
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In a novel application of the indirect metnod, Van Tuyl 1281 has

obtained solutions for both axisynimetric and planar nozzles. The stream

function and density are expanded as Taylor series in the neighborhood of a

1 point on the nozzle axis along which the velocity distribution is specified.

The coefficients of these series are found by substitution into the govern-

ing irrotationality and Bernoulli equations, and series for other quantities

of interest are also determined. Pad6 fractions are then used to obtain

convergence when the resulting power series diverge and to accelerate con-

f vergence when they converge. Van Tuyl carried out sample calculations for

a specific axisymmetric nozzle using a digital computer both to obtain the

terms of the series and to form the PadO approximants. The computations

took 21 seconds on a CDC 6400 when 25 terms in the power series were retained.

An inverse scheme for analyzing the flow in conventional plane and axi-

symmetric nozzles has been reported by Klopfer and Holt 129). In their

formulation, the von Mises transformation is applied to the continuity and

Euler equations so that the dependent variables are taken as the pressure,

1 the transverse coordinate, and the ratio of the transverse to streamwise

velocity components. The resulting equations are numerically integrated

I using the prescribed pressure distribution along the nozzle axis. Results

for both plane inverse and axisymmetric direct problems are presented, and

I good agreement is obtained with the data of Cuffel, et. al. [30] in the

1 axisymmetric case. The direct problem is solved iteratively as a sequence

of inverse problems.

Ishii {31] has recently proposed an inverse method for nozzle design.

In this technique, the governing equations for inviscid flow are transformed

I,



so as to use the streamline and orthogonal trajectories as independent vari-

ables. The flowfield is divided into streamtubes and integration of the

equations is carried out numerically starting from the prescribed velocity

distribution along the nozzle axis.

As should be clear from the preceding discussion, the major disadvan-

tage of the indirect methods is their inability to deal with the problem of

analyzing the flow in a nozzle of a given configuration. Only Hopkins and

Hill (241 have devised a scheme for avoiding the iterations which are inevi-

table when applying an inverse technique to the direct problem. As discussed

by Brown and HamiltJr [15] and Klopfer and Holt [29], another objection to

these methods is the potentially poorly posed nature of the problem resulting

from the specification of the velocity along the centerline in the subsonic

region. When the governing equations are solved numerically, this specifi-

cation is known to have a destabilizing effect on the computations (Hadamard

instability).

2. Series Expansion Methods

The series expansion techniques have proven to be very popular for

obtaining the flowfields in the throats of supersonic nozzles. In these

methods, the dependent variables are expanded in series, and the unknown

constants and functions are then determined by substitution into the govern-

ing equations and boundary conditions. These techniques can generally be

considered to provide approximate solutions for the problem of analyzing the

flow in a nozzle of a given configuration.

One of the first attempts at solving the direct problem of flow in a

planar nozzle was made by Taylor [321 in 1930. He expanded the compressible
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perturbation potential in a double power series in the coordinates and sib-

stituted it into the corresponding potential equation. By usinq the

boundary condition that the nozzle wall is a streamline in the inviscid

sense, the coefficients in the series were obtained. Taylor calculated an

example for a nozzle with circular walls and a dimensionless radius of

curvature t R', of 4. .

Somewhiat later, Sauer (331 presented series solutions for the flow in

both axisymmetric and planar supersonic nozzles. In this well known tech-

nique, the compressible potential equation was first simplified by retaining

only the dominant terms, and the perturbation potential function was then

expanded as a power series in the transverse coordinate, y, with unknown

coefficient functions of the streamwise coordinate, x. By substituting the

expansion into the simplified potential equation and relating the resulting

flowfield to the curvature of the nozzle walls, the unknown functions and

constants were obtained. However, since the series was terminated after the

first two terms, the results are applicable only to nozzles with small wall

curvature, i.e., large R,.

At about the same time, a somewhat different solution technique for the

conventional configurations was proposed by Oswatitsch and Rothstein [34].

Rat;ier than obtaining solutions for nozzles whose centerline velocity dis-

tribution is approximated to be linear as in Sauer's method, any centerline

distribution is, in principle, possible in Oswatitsch and Rothstein's method.

tThroughout this investigation, the dimensionless radius of curvature, R

is defined as the throat wall radius of curvature divided by the throat
half-height. For conventional axisymmetric nozzles the half-height is
taken as the throat radius, while for annular nozzles it is taken as the
distance between the inner and outer throat wall locations in the
meridional plane.
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however, since it is determined by the iterative solution of a differential

equation which results from the continuity equation for a given nozzle con-

tour, this technique is much more difficult to use than Sauer's closed form

solutions. In addition, Oswatitsch and Rothstein's method gives anomalous

results for nozzles which have a small wall radius of curvature.

Hall [35] also carried out an expansion solution for the flow in the

throat of axisymmetric and plane nozzles. In this investigation, a careful

order of magnitude analysis of the various dependent and independent vari-

ables was made, and the transonic perturbation velocity components were
-1

expanded in appropriate series using : = R as the expansion parameter.
C

By substituting these series into the wall bounaary conditions and the

governing irrotationality and gas dynamic equations, the formulations for

the various orders of solution in the expansion technique were obtained.

Closed form expressions for the first three orders were determined by using

solution forms suggested by the boundary conditions. The first order solu-

tions are identical to those of Sauer [33], and Hall also found that to the

first three orders the approximate solutions for nozzles with circular,

parabolic, and hyperbolic arc wall contours coincide. Nozzles for which

the wall radius of curvature is less than the throat half-height, Rc<l ,

cannot be analyzed with this technique since this results in expansion

parameters greater than unity. In fact the smallest value of RC used by

Hall in his example calculations is 10/3.

This same solution technique was later extended by Moore and Hall [36)

to the case of annular nozzles inclined arbitrarily to the axis of symmetry.

However, as pointed out by Thompson and Flack [37], the coordinate system

A
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I
employed in this study is an overspecified, inconsistent one. In a co7-

panion report, Moore [381 used = R -2 as the expansion parafreter to

construct approximate solutions for the flow in asynvietric planar nozzles.

The first three terms of the series solution were presented along with the

results for two special cases, namely the configurations in which the two

nozzle walls have unequal curvature and in which the nozzle wall contour

i is asyrmnetric about the throat plane.

In a series of articles [39-421, Szaniawski has investigated transonic

flow in nozzle throats. In [39] and [40], the governing equations are

derived and the existence and nature of solutions for the flow of a viscous,

heat conducting gas in the throat region of two-dimensional plane nozzles

are investigated. The two later papers [41,42] are concerned with finding

solutions under the usual assumptions of inviscid, irrotational flow. A

solution is developed for a particular class of planar nozzle wall contours

in [41]. The potential function is expanded as a power series in the trans-

verse coordinate with undetermined coefficient functions of the streamwise

coordinate. Recurrence relations for these functions are then determined

by substitution into the potential equation and the boundary conditions. A

similar method is used in [42] to determine solutions for both plane and

axisymmetric conventional nozzles, but an auxiliary system of curvilinear

coordinates is employed. Both solution techniques are applicable only to

nozzles which have a large throat radius of curvature.

In a somewhat different but closely related area, Sichel [43,44] has

studied the flow in two-dimensional nozzle throats at operating conditions

near the choking point. The transition from symmetric Taylor flow to

- -- .-- --.... r



continuously accelerating Meyer flow was investigated by including the

effect of longitudinal viscosity in the governing equations. Based on this

formulation, a similarity solution was found which provides a smooth tran-

sition between the regimes and which shows the initial stages of shock

formation.

Kliegel and Quan [45] used a method similar to Hall's for predicting

plane and axisymmetric nozzle flows except that a different stretched axial

coordinate was employed. The velocity components were expanded as series

in R - and two orders of corrections to the one-dimensional solution
C

were obtained. The authors conclude that the resulting solution, which is

claimed to be valid throughout the entire nozzle, should be limited to

nozzles which have a large wall radius of curvature, R_>2, and that Hall's

transonic solution can be obtained from it through a coordinate transforma-

tion and reordering of the terms. The cases of unchoked nozzle flows and

multistream nozzle expansions, as would occur in film cooled rocket engines,

are also discussed.

The expansion solutions presented so far are all limited to nozzles

with gentle wall curvatures. In an attempt to analyze the case of small

wall radius of curvature for axisymmetric nozzles, Kliegel and Levine [46]

presented a solution utilizing c (Re +1)-' as the expansion parameter.

Since this parameter is less than unity for all values of the radius of

curvature, the resulting series should have superior convergence properties

in the limit of small R . The authors contend that this solution is the
C

one obtained when the solution in toroidal coordinates, which are convenient

for circular arc wall contours, are transformed back to cylindrical



coordinates. However, in a later pub"lication Levine and Coats [471 conc ,,de

that this contention is false and also that 'the pronnsed series do not

satisfy the differential equations of "Tlotion in cylindrical co rdnates.

In reality, the "solution" proposed in [46j is simply Hall's solution ir

= R transformed to a series in (R +1)-I such that the two are
C

equivalent in the limit of large radius of curvature, R --. Kliegel and
C

Levine also corrected some errors which appeared in Hall's third order

solution for axisymmetric nozzles, although the present author has found

their correction of the discharge coefficient to be in error.

The conclusions of Levine and Coats [471 just mentioned were the

result of an extensive investigation of axisymmetric nozzle throat flows.

The transonic equations of motion, including the effect of variable

specific heat ratio, were solved in toroidal coordinates using a combina-

tion of a small parameter expansion and a double series in the coordinates.

Although a number of expansion parameters was tried, none of the resulting

solutions was found to be convergent for small values of R . The authorsC

hypothesized that this is because the expansion solutions assume that the

local wall geometry, in particular the throat radius of curvature, completely

determines the flowfield in the throat and that this premise breaks down as

R -0. In addition, the effect of variable specific heat ratio was found toC

be negligible in the transonic region.

Taulbee and Boraas [48] have developed a Hall-type series solution for

transonic flow in the throat region of axisymmetric nozzles with a nonuni-

form stagnation temperature distribution at the inlet. The governing con-

tinuity and Euler equations were first transformed using the stream function
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as an independent variable, and expansions for the dependent variables were

then assumed using an order of magnitude analysis. Two orders of solutions

were obtained, and the results indicate that the sonic line location is

essentially unaffected by the nonuniformity of the stagnation temperature.

However, as demonstrated by the calculated example presented in [49], the

flowfield details such as the flow angle sensitive to the total temper-

ature distrioution. In a later paper, Boraas [50] included the effects of

nonuniform total temperature and composition in an analysis of transonic

throat flow in axisymmetric nozzles. First and second order solutions were

again found (see Ishii [51] for corrected equations), and it is stated that

in this case the sonic line location does depend on the nonuniformities of

the properties upstream of the throat although no examples are presented.

In both of the rotational analyses just cited the expansion parameter is

taken as E = R so that the solutions are not applicable to nozzles withC

small radius of curvature of the throat wall.

Apparently unaware of the earlier work of Lord (23], Smithey and Naber

[521 presented a solution for the sonic line in an axisymmetric nozzle with

a concentric inner cylinder. The solution was obtained by hypothesizing a

trial form suggested by the Sauer [33) solutions for the limiting cases of

axisymmetric and plane nozzles. Substitution into the transonic gas

dynamic equation and use of the boundary conditions then allowed determina-

tion of the unknown functions and constants. However, since the resulting

solution satisfies the irrotationality condition only for the limiting con-

figurations, its applicability to the annular case of interest is

questionable.

I
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Thompson and Flack [14,37,53] have performed a very extensive investi-

gation of the flow in the throat region of asynrietric plane and annular

axisynmmetric supersonic nozzles. In their theoretical analysis, the method

of Hall was used with an expansion parameter which reduces to • = (RC+') -'

where R is an average dimensionless radius of curvature for the two walls

and , may be taken as zero or one. Three solution orders were obtained,

and the authors noted that significant improvement in the convergence

properties of the solution for small radii of curvature resulted from using

T = I. However, because of the manner in which the axisymmetric term in

the gas dynamic equation was expanded, the annular solutions can be applied

only to configurations for which the distance from the axis of symmetry to

the nozzle throat is large when non-dimensionalized with respect to the

throat half-height, i.e., annular nozzles which approach the plane configur-

ation. Their solution cannot be used for conventional axisymmetric nozzles,

and, in addition, it appears that it gives planar results for annular

nozzles which are not inclined with respect to the axis of symmetry.

Experiments utilizing both static wall pressure and laser doppler veloci-

meter measurements were performed for a series of plane nozzle throat con-

figurations; good agreement was found between the analytically and experi-

mentally determined sonic lines. These experiments will be discussed in

more detail in a later section.

Recently, Ishii has published the results of analytical investigations

of the flow in axisymmetric nozzle throats with rotationality effects

included. In (541 throat flowfields with rate processes and nonuniform

property distributions are considered; see also the comment by Boraas [55]

I



and the rebuttal by Ishii [51]. The expansion method of Hall was used with
-i

the parameter taken as £ = R , and one term of the series is presented
C

for frozen and equilibrium, uniform flows. The transonic flow of a vibra-

tionally relaxing or chemically reacting gas in a converging-diverging

nozzle is investigated in [56]. Again the Hall method was employed, but in

this study the expansion parameter was chosen as F = (R +1)-

The main disadvantage of the series expansion techniques is that they

can generally be applied only to a given class of configurations. In

particular, most of the analyses mentioned above have been developed only

for the conventional two-dimensional plane and axisymmetric configurations.

Also, for all of these analyses, there is a lower limit on the throat wall

radius of curvature below which the analyses give unreasonable results. On

the other hand, since the series methods generally lead to closed form

expressions, the implementation of these solutions is quite straightforward.

3. Time Dependent Numerical Techniques

In order to avoid the mixed nature of the governing equations for

steady transonic flow, the time dependent methods utilize the unsteady form

of the equations which are hyperbolic for all speed regimes. The resulting

initial value problem is solved numerically by continuing the computations

in the time domain from an arbitrarily assumed set of initial conditions

until the steady state is asymptotically approached.

Saunders [57] apparently was the first to apply this technique to

internal transonic flows. In this study the two-step Lax-Wendroff differenc-

ing scheme was employed to integrate the equations for flow in axisymmetric

I,
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nozzles with uniform inlet conditions assumed. Good agreement was found

between the numerical results and the wall static pressure data of Back,

et al. [58] for a converging-diverging nozzle. The computation time was

I reported as approximately 45 minutes on a CDC 3200 computer.

SMigdal. Klein, and Moretti [59] utilized a nonconservative form of the

basic equations together with a stretching of the axial coordinate to

I obtain tne throat flowfield in axisymmetric Laval nozzles. An example

calculation was performed for a configuration with a dimensionless throat

Iwall radius of curvature of 0.625 and inlet and exit angles of 450 and 150,

respectively. The agreement between these results and the wall pressure

data of Back, et al. [58] is excellent. The running time for this case

was less than five minutes on an IBM 360/75.

By using the two-step Law-Wendroff scheme developed by Saunders [57],

IWehofer and Mjger [601 investigated the effect of nonuniform inlet condi-

tions on axisymmetric convergent-divergent nozzle flows. These authors

also considered the case of an axisymmetric converging nozzle with a coni-

cal inlet section including the influence of the operating pressure ratio

and the associated free jet structure. The computations were very time

Iconsuming, however, taking from two to five hours, depending on the mesh
size, on an IBM 360/50.

Brunell [611 used a somewhat different technique to study the transonic

flowfields in planar, supersonic nozzles. In his method, a modified upwind

differencing scheme was utilized to integrate a conservative form of the

I governing equations. The results appear to be reasonable for operating con-

ditions in which the nozzle is not choked, but problems were encountered

.1
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for the choked conditions which are of primary interest. In the latter

case, the constant Mach number lines contain slope discontinuities which

Brunell hypothesizes are due to numerical pressure disturbances that are

propagated from the supersonic wall region into the subsonic region.

Experiments were also conducted using an annular nozzle with a cylindrical

centerbody and small throat gap, but in all cases only unchoked operating

conditions were studied.

In order to predict the flowfields, and especially the discharge

coefficients, for axisymmetric and plane nozzles with small throat radius

of curvature, Laval [62,631 used a time dependent method similar to that of

Saunders (571. In this treatment, however, an axial coordinate stretching

was employed together with the introduction of a pseudo-viscosity term to

avoid stability problems. Calculations were carried out for nozzles with

radius of curvature values down to 0.1, and very good agreement between

computed and measured values of the flow coefficient was noted. Laval

states that the method can be applied to annular configurations, although

no such examples are presented in the references cited above. The calcula-

tions required approximately two hours of IBM 360/50 time.

Serra [64] has also developed a transient technique for the determina-

tion of nozzle flows. In his method, the one-step Law-Wendroff difference

scheme is incorporated with a numerical damping term so as to stabilize the

numerical procedure in the vicinity of shock waves. Also, since mathemati-

cal overspecification of the entrance flow conditions caused accuracy diffi-

culties in earlier numerical studies, the problem was formulated to establish

realistic conditions at the entrance. The computed results compare well

I



I with experimental data and previous theories for axisyninetric and planar

g nozzles. An example is also included of the flow in an annular turbofan

passage. The computation time on a Univac 1108 computer was 80 minutes

for an axisymmetric nozzle problem.

In an effort to reduce the long computation times associated with time-

I dependent methods, Cline J65-681 has developed an efficient program for

calculating a wide variety of compressible, internal flows. The second-

order accurate, MacCormack finite difference method is utilized to solve the

governing equations which are left in a nonconservative form. A second-

order, reference plane characteristic scheme is used for the boundary

points, and an explicit artificial viscosity is included for shock calcula-

tions. The most recent version [68] of the code solves the Navier-Stokes

rather than the Euler equations so that viscous flows with Reynolds numbers

up to about 104 can be analyzed. Several examples are presented including

inviscid converging, converging-diverging, and annular nozzle flows as well

1 as a viscous converging-diverging nozzle calculation. Good agreement

Ibetween the computations and experimental data is obtained with computation

times ranging from 29 seconds on a CDC 6600 to 7 minutes on a CDC 7600 for

the example problems. These times are obtained, however, at the expense of

using coarse mesh spacing, particularly in the inviscid cases.

I The major advantage of the time-dependent numerical techniques is that

if the codes are developed in a sufficiently general manner they may be

employed in the analysis of a variety of transonic internal flows. A

serious drawback to their use, however, is the long computation times

required. This means that parametric studies or iterative calculations, such

Af
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as might be necessitated in a design procedure, would be numerically time

consuming and expensive.

4. Other Methods

A number of other methods have also been used for nozzle flow analysis.

One such technique is the method of integral relations developed originally

by Dorodnitsyn [69]. In the application of this method, the flowfield is

divided into streamwise strips across which the governing partial dif-

ferential equations are integrated using assumed profiles for the dependent

variables. The resulting ordinary differential equations are then solved

to obtain the coefficients. Holt [70] formulated the one strip and two

strip approximations for both the inverse and direct problems of flow in

planar nozzles. Results of a one strip, inverse calculation are presented

and are found to agree well with the hodograph results of Cherry [21] in the

supersonic region but to diverge seriously from them in the subsonic region.

Liddle and Archer [71] carried out one and two strip computations for the

analysis of the flowfield in axisymmetric nozzles of arbitrary shape with

particular emphasis on conical nozzles. The two strip solutions gave good

agreement with experimental wall and centerline pressure measurements for

nozzles with R >2. Liddle [72] later extended the method to include the
C-

cases of annular and asymmetric, plane nozzles. One strip calculations

were performed and were found to be in reasonable agreement with wall pres-

sure measurements for an annular configuration and with the numerical

method of Katsanis [73] for incompressible flow in a planar nozzle. One of

the fundamental difficulties involved with using the method of integral

I-



relations is that to achieve reasonable accuracy for nozzles which have a

small throat radius of curvature a large number of strips is required with

attendant long computing times and program complexity. Saddle point

singularities which arise in the integration of the equations must also be

carefully handled.

Numerical techniques other than the time dependent ones discussed

previously have also been utilized for throat flowfield analyses. In an

early investigation, Emmons [74] developed a method which used a conformal

transformation and a relaxation process designed for hand calculations to

solve the governing equations. In a later publication [75], an example

was calculated for the flow in a two-dimensional nozzle with a hyperbolic

wall contour. Interestingly, when this method was programmed on a digital

computer convergence problems were encountered [15]. Twenty-five years

later Prozan and Kooker [76) investigated axisymmetric nozzle flowfields

using an error minimization technique. A sophisticated steepest descent

procedure was employed to minimize the residuals in the steady flow con-

servation equations. The results of this method agree quite well with the

flowfield measurements of Cuffel, et al. [30] for a nozzle with small

throat radius of curvature. Typical run times ranged from 5 to 10 minutes

on an IBM 7094. Recently, Brown, et al. [77] used a type-dependent

relaxation technique to study both conventional and annular axisymmetric

nozzle flows including the effects of rotationality. In this method,

which is quite popular for external transonic flows, the axial derivatives

are approximated by centered differences in the subsonic (elliptic) portion

of the flowfield and by backward differences in the supersonic (hyperbolic)

I.
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region. The results of example calculations for hyperbolic, conically con-

vergent, and annular nozzles indicate that the rotational effects of

entrance flow nonuniformities can be significant in evaluating nozzle

performance. The example problems required from 3 to 5 minutes and a

region size of approximately 170K on an IBM 370/158 computer. Using a

somewhat different numerical scheme, Fanning and Mueller [78] have studied

planar nozzle flowfields. The problem was first recast as a Laplace equa-

tion with an inhomogeneous term that encompasses the compressibility effects.

A successive approximation method was then utilized to converge to a final

solution. Flowfield and discharge coefficient results agree well with

experimental measurements, but the computing times are extremely long, taking

from 45 minutes to 6 hours of IBM 370/155 time.

B. EXPERIMENTAL

Not only are theoretical analyses of transonic nozzle flows quite

complicated, but experimental measurement of them is also difficult. This is

because disturbances introduced by measurement probes are propagated along

characteristics and are reflected from the duct walls back into the region

of interest. Thus, most experimental studies have been limited to wall

static pressure measurements, although some investigators have attempted to

use pitot probes. Recently, non-intrusive optical techniques have also been

employed.

The most thorough flowfield experiments have been performed for the

two-dimensional planar geometry, primarily because sidewall static taps can

be used to obtain both transverse and streamwise pressure distributions.

Jacobs [79] utilized this method to determine isobars in six asymmetric plane
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B nozzles. Later, Flack and Thompson [14,53,80] conducted an extensive series

g of experiments on a set of 13 two-dimensional nozzles with a number of wall

curvature combinations. For each configuration the sonic line location was

determined using sidewall static pressure readings and also laser doppler

velocimeter (LDV) measurements. It was found that the two data sets and the

B results of the series solution developed in (37] agreed with each other

l reasonably well with the LDV measurements being slightly upstream of the

static pressure measurements and the theoretical results being still further

upstream. These investigators observed that small changes in the boundary

geometry caused very large changes in the sonic line location.

Experiments for axisymmetric Laval nozzles have been limited mainly to

wall static pressure readings since the nozzle geometry does not provide

any means for making flowfield static pressure or LDV measurements. One of

the first experimental investigations of transonic nozzle flow was performed

by Stanton [81]. The flowfield in an axisymmetric nozzle with R = 4.77

was studied by determining static pressure distributions along the contour

for a number of supply pressures. Pitot pressure distributions were also

measured along the axis and along an axial line near the nozzle wall, but

the probe certainly disturbed these measurements, particularly those made

near the wall. At the Jet Propulsion Laboratory a number of experimental

Iinvestigations [30,58,82-84] of axisymmetric nozzle flows has been made by

Back and his co-workers. Static wall pressure and discharge coefficient

measurements for nozzles with a dimensionless throat radius of curvature as

small as 0.25 were used to study the effects of contraction section shape,

inlet flow direction, wall friction, entrance boundary layer thickness, and

!Y
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wall cooling. Only for a nozzle with a radius of curvature of R = 0.625
C

and conical inlet and exit angles of 450 and 150, respectively, were flow-

field measurements made [30). These were obtained by means of a 0.889 mm

diameter tube which was supported and held taut between an upstream plenum

chamber and a downstream vacuum chamber. The tube had a 0.152 m diameter

hole drilled radially in it, and the pressure distributions along the axis

and along five radial locations were found by appropriate axial traverses.

At the off-axis positions disturbances were undoubtedly introduced into the

flowfield and the velocity vector was inclined to the tube. However, to

date this is the only known set of data which considers the flow patterns

in the transonic region of an axisymmetric nozzle. Liddle and Archer [71]

measured the centerline and wall pressures fo! four axisymmetric nozzles

with radius of curvature values ranging from 0.625 to 4.0. The centerline

distributions, however, are reported for only two of the nozzles. In

another series of experiments, Masure, et al. [63] measured the discharge

coefficients for five nozzles with conical inlet and exit sections and R
c

values from 0.25 to 0.8

Data for annular configurations is extremely sparse. Bresnahan and

Johns [85] measured static pressures along the inner wall of a turbojet plug

nozzle. In their experiments the outer wall was straight and parallel to

the axis of symmetry and the inner wall had a large radius of curvature,

R = 7.8 . However, there were only three pressure taps in the transonicC

region for which the corresponding Mach number was less than 1.5, since the

supersonic region was of primary interest in this study. As mentioned pre-

viously, Brunell [61] conducted experiments on an annular nozzle with a

!
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cylindrical centerbody, but only operating conditions for which the nozzle

j was unchoke( were considered. Liddle {72l has also obtained wall press~re

measurements for an annular, supersonic nozzle. However, the geometry of

the experimertal setup is not specified in 1721, and, in any event, the data

are very close to the results of one-dimensional theory.

Obviously, there is a need to expand the data base for flow in the

transonic region of nozzles, particularly in terms of flowfield measurements

for both conventional and annular axisymmetric configurations. As mentioned

in the preceding chapter, this is one of the objectives of the present

investigation.

fi



III. THEORETICAL ANALYSIS

The objectives outlined in the introductory chapter for the theoretical

investigation are to provide a numerically fast, reliable, and accurate

method for describing the throat flowfields in annular, supersonic nozzles.

In addition, it is desired that the method be direct and that it be appli-

cable to a wiat variety of configurations. Of the few previous analyses

which have considered the annular geometry, none are felt to have all of the

desired characteristics. Two (23,25] utilize indirect methods; others

[36,37,52,72] may be applied only to specialized configurations, and the

rest [62,64,68,77] are generally numerically slow and expensive. Only the

recent numerical techniques of Cline [68] and Brown, et al. [77] have

obtained results with a modest expenditure of computing time. However, both

of these methods implicitly assume that the main flow direction in the

throat is essentially parallel to the axis of symmetry.

Based on these considerations, the method which has been chosen is a

series expansion technique similar to that used by Moore and Hall [36] and

Thompson and Flack [37] but more general in terms of the geometries which

can be analyzed.

A. FORMULATION

A sketch of the configuration under consideration is shown in Fig. 111.1.

The R-Z coordinate system is the standard cylindrical system while the x-y

coordinate system is rotated such that the y-axis lies along the cross section

of minimum area in the throat with the x-axis perpendicular to the y-axis and

the origin located on the axis of symmetry. For this general case, the main
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flow x-direction is inclined to the axis of symmetry at an angle 3, positive

in the counterclockwise direction, and d is the throat half-height in the

R-Z coordinates. It should be noted that for an inclined, annular nozzle

the minimum area cross section does not correspond to the cross section of

minimum distance between the contours. The influence of the radial coordi-

nate, R, in computing the annular area results in the minimum area section

being nearer the axis of symmetry than the minimum distance section.

It is assumed that the problem to be analyzed is the steady, inviscid,

irrotational, adiabatic flow of a perfect gas in an annular nozzle operat-

ing in the choked, continuously accelerating, Meyer regime. These are the

usual assumptions and operating conditions of interest. The inviscid

assumption, in particular, is justified since the Reynolds number based on

the throat height is large for most practical applications and the stream-

wise pressure gradient is favorable. Therefore, the boundary layers in the

throat region are very thin and viscous effects may be safely neglected.

Under these assumptions, the governing equations may be taken as the

irrotationality condition and the "gas dynamic equation" [861,

UR VZ = 0 (111-1)

(U2 a2 Uz + (V2 a2 V + 2UVU - a V 0 (I1-2)VR - T

a = speed of sound ,

where the gas dynamic equation is obtained from the continuity equation,

Euler's momentum equation, and the definition of the speed of sound. In

these equations, subscripts are used to denote partial differentiation with

respect to Z and R. These two governing equations can be combined to form



the well-known compressible potential equation, but since the solution is to

be found in terms of the velocity components, the potential function is not

introduced into this analysis. Transforming from the R-Z cylindrical coordi-

nates to the x-y system with lengths non-dimensionalized with respect to the

throat half-height, d, and velocities with respect to the critical speed of

sound, a*,

X = (Z-Z*) cos + R (111-3)
d d

Y = - d-- sin6 + cos (111-4)
U V

U - cos3 + - sin6 (III-5)

U V

v = - sine + L cos6 , (111-6)

and using the following adiabatic relation for a perfect gas with constant

specific heats,

( 2 
=L~ -y- X u2+V23 (111-7)

the governing equations take the form

u - v = 0 (111-8)
yu +

-u- __ Vu - uvu + 1_V U v

(1 - 1 u2 
-

Y
-

I v2 (v cos6 + u sin6)+ y+l y+l.+ :I 0 (1II-9)
y cosa + x sin)

The final step in the transformation of the equations is the introduction of

the transonic perturbation velocity components by

U= + 6 II-O
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V v , III-II)

where 6 and V are assumed to be small compared to unity, u , vi-l. This

results in

- V = 0 (111-12)y x

"Y+l u u - + (-+)9 v + 1+l u vy

2 1:1- 6 _ 1y 1 u _ 1 7 1 IV cos,; + (1+)sin s]+ +1 y+l Y : 0.

y cosB + x sine=

(111-13)

The boundary conditions in this inviscid analysis are that the bounding

walls must be streamlines. Using y = g(x) and y = h(x) as the functional

forms of the equations for the inner and outer wall contours, respectively,

the boundary conditions can be stated as

V(x,g(x)) = [l+6(x,g(x))]g'(x) (111-14)

V(x,h(x)) = [l+6(x,h(x))]h'(x) , (111-15)

where primed quantities represent differentiation with respect to x,

d( " Expanding the equations for the boundaries in Maclaurin series
dx

about the throat,

2 3

y = g(x) = yi + g'(O)x + g"(O) 1 + (111-16)]+ + (I(0)I-16)

2 3

h(x) = y + h'(O)x + h"(0) () h' x0T. 30 (1ll-17)

the boundary conditions can be rewritten as

V(x,g(x)) = [l+D(x,g(x))] '(O)+g"(O)x+g"' (0) 7T. + ... (111-18)

V(x,h(x)) = [1+U(x,h(x))][h'(O)+h"(O)x+h"' (0) 2+ (III-19)

Pr|
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The solution technique involves expanding the perturbation velocity

I components in appropriate series and substituting them into the governing

equations ano boundary conditions. However, before this can be done an

I expansion parameter, t, must be chosen and various order of magnitude esti-

I mates made. Both Kliegel and Levine [46] and Thompson and Flack [37] found

that improved convergence properties of their series solutions were attained

for nozzles with a small wall radius of curvature by using = (R +) -l

rather than the Hall [35] parameter E = Rc- . Based on their experience,

Ithe expansion parameter which has been used in this investigation is

= (R +n)- (111-20)

where R is an average dimensionless radius of curvature for the two bounding
C

walls and n is arbitrary. For r > 1, c is therefore less than unity regard-

less of how small R may be. Defining R in terms of the second derivatives

of the equations for the wall contours,

Rc - h"i0) 2 g"(0) (111-21)

- becomes

h"(0) - q"(0) (111-22)

This is identical to the parameter used in [37] except that n may have any

value here and is not restricted to the values zero or one.

From one-dimensional considerations, it is well known [13] that the

Iacceleration at the throat of a supersonic nozzle is given by
du - F¥'lR '/2 (111-23)

TT

LO 
-

T.
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where : 0 for plane two-dimensional nozzles

1 for axisymmetric nozzles

Us ng Eq. (111-10), the definition of transonic perturbation velocity com-

ponent , and Eq. (111-20), t.e definition of the expansion parameter E,

Eq. (111-23) yields the following order of magnitude estimate for the

transonic throat region,

6= .)( / (111-24)

Also from the dominant terms in boundary conditions (111-18) and (111-19), it

is known that

V. Y= : g"(0) + g"' (O)x + ... (111-25)

xIY=h = h"(0) + h"' (O)x + .... (111-26)

It is shown in Appendix A that the terms g"(0) and h"(0) dominate the right

hand sides of the two preceding equations for nozzles with circular arc wall

contours. Combining this information with the definition of c in Ea. (111-22)

allows the estimate

V o(E) (111-27)

for the transonic region.

Requiring that both terms in the irrotationality condition (111-12) be

of the same order of magnitude and using this last estimate for V resultsx

in the conclusion that i must also be 0(E) in the throat. Since all lengthsy

have been non-dimensionalized with respect to the throat half-height, d, Ay

is o(l) across the throat and therefore D must be O(E) in the transonic region

of interest. Utilizing the estimates expressed in Eqs. (111-24) and (111-27),

it is concluded that V/D : O(E1/23 or V = ole3/2}. Taking this estimation for

I
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the magnitude of V together with Eq. (111-27), or alternately the irrotation-

ality governing equation (111-12), results in the requirement that x be of

L/21 for consistency. Thus, the solution developed here is restricted to

the narrow transonic region about the throat plane, x = 0.

To complete the order of magnitude analysis the gas dynamic equation

(111-13) must be investigated. Dividing the numerator and denominator of

the last term of this equation by cosB, it may be restated as,

!_2_2 _ 1- V2] + (l + 2  2 U __ : 1_-2

u+ - y+--- (1+)vu - - v - 2 l - _+l u v

2 - 2 u -+I [:V2 + (l+U)tan]

y + x tan6 "

cos 0 . (111-28)

Disregarding their numerical coefficients, the dominant factors in each of

the first three terms are 6 , Y, and V which are O(C3/2), j(5/23, andx' y y

'3/2), respectively. Likewise, the dominant factors in the last term are,

+ tan 3

y + x tanB

Assuming for the moment that tan is at most 0(1), i.e., disallowing con-

figurations with radial or nearly radial main flow directions for which

tan6 , this term can further be reduced to

V + tan6

y

since x has been restricted to the throat region, x = O(k /2). Since

y = () or larger, depending on the dimensionless distance from the axis of

tThis restriction is consistent with the previous one that cosa # 0 in

Eq. (111-28).
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symmetry to the annular nozzle throat, and using the previous estimate for

the magnitude of , it is known that,

('_3j3/23 (111-29)
y

or smaller. Therefore, in order that the dominant terms in Eq. (111-28) all

be of the same order, it is required that

tan_ 3/2 (111-30)

or smaller. This means that for annular nozzles with throats that are near

the axis of symmetry in a dimensionless sense, y = o(1), only small angles

of inclination, 8, may be considered. However, this would seem to be the

only physically realistic case anyway, since one would not expect to

encounter an annular configuration for which the throat is very close to

the symmetry axis while the main flow x-direction is highly inclined to it.

For nozzles whose throats are large distances from the axis, y >> I, the

restriction to small angles of inclination may be relaxed as long as the

estimate of EQ. (111-30) is satisfied. In the limit as y - c, the last term

in the governing gas dynamic equation (111-28) vanishes as it takes the

correct planar form.

The expansion parameter, E, as defined in Eq. (111-22), is related to

the average wall curvature of the bounding walls at the throat and enters

the formulation through the second derivative terms in the Maclaurin series

expansions for the boundary conditions, Eqs. (111-18) and (111-19). However,

because of the complication that the definition of E involves both g"(0) and

h"(O) while each boundary condition contains only one or the other, a method

must be devised such that when expansions are assumed for the dependent

I
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variables, appropriate series occur in the expression of the boundary condi-

tions. This is done in the following manner. Solving Eq. (111-20) for R

- _ - (11I-31)
C

and using the identity g"(0) 1g"(0)R -1 along with Eq. (111-21) for R

cc
and Eq. (111-31) for yields

g"(O) = "( ) 2 "( ) + 2 F3 
+ "" (111-32)

~~for ncl K 1

Similarly,

h"(0) = 2h" 0 _ 2h" 0 f +nc23 + q 2 .. (111-33)
h"0 g"(0) I- nE h"(0) - 0g"(0

for ITIF < 1

The requirement that In4 < 1 in the expansions above is always met since

h"(0) - g"(0) > 0 for an area miniunm at the throat and only non-negative

values of n are considered (see Eq. (111-22)). In this way power series in

E are obtained in the boundary condition evaluations, although it is clear

that the second derivatives are exactly matched only for n = 0. The coeffi-

cients multiplying the parentheses in Eas. (111-32) and (111-33) are O(1),

and as shown in Appendix A, the first few derivatives in the Maclaurin

series expansions for circular arc wall contours are of the following orders

of magnitude,

g'(0), h'(0) = o(E3/21 g"(0), h"(0) = o(E)

g"' (0), h... (0) o E7/2 gi (0), h' (0) 3) (111-34)



Using the estimates obtained thus far, various _(l) independent variables

and parameters are defined as shown below,

Z -1 /2

x y- I

- 1 
/2 -3/2 +1'-112 31/ 2

( 2 1 g'( ) hI L 2 j ih' (0) (111-35)

2 "(0 ) 2- h "(0)
2 h"()0 - g" 0 2 hO - g" 0

[ 2t -1 2 / - /2 h, (
g3 2 E / g,,, (0) h 3  L 2 h"' (0)

Note particularly the transformation from coordinate x to the 1(1), stretched

coordinate z. It is also seen that the estimates y = 0(1) and tans = ( 3/23

have been used in the definitions of y and 1, although as previously dis-

cussed, nozzles with larger inclinations may be analyzed if the requirement

expressed in Eq. (111-30) is satisfied.

With these definitions and order of magnitude estimates the next step is

to expand the perturbation velocity components in appropriate series.

Assuming expansions in half-powers of c starting with D = O(c) and

= OC3/2) , it has been found that the following series are sufficient,

i(z,y) = u1(z,y)c + u2(z,y)c
2 + u (z,y)F3 + ... (111-36)

1(z,y) : + v(z,y)E:2 + v3 (z,y)E
3 + , (111-37)

i.e., terms involving odd half-powers of E in the 6 expansion and even half-

powers of E in the V expansion vanish.

!:
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Substituting definitions (111-35) and expansions (111-36) and (111-37)

into the governing irrotationality equation (111-12) and gas dynamic equa-

tion (111-28) and gathering coefficients of like powers of , results in the

following two sets of equations,

Su v

__ = 0 (n : 1,2,3, ... ) (111-38)

and

u i v i 1I + v I
- 2u 1  + 1 + 1 0 (n = 1) (111-39)

;u DuI  3v v
- 2u u. - 2u ++-- + -- z fn ui,v, ... ,un-I ,v (n = 2,3,2un c3 az y y . .... u - ji. . .

(111-40)

where the functions, fn' on the right hand side of Eq. (111-40) are always

known from the lower order solutions. The first two are given by

f 2 -ui + 2v - + (y-l)u - + (y-l) + (v-2) 1 ' (111-41)
f = Iu 5Z' 1 11+(Y l

and Y

f u2  2 u 2  'U 2 'u + v u I

f3 2u + u1  + 2uu 2  v + 2v - + 2u v -y

2 9 2 z V2 3 2 1 -9 2 V U1 1V2

-+ 2v 9U2-+ (y-l)u 'V2-+ (Y-l)u IV,-+ (- 1 u I 2 v + (y -l)

U2V U V 1  '1U2 +I UY _ IZ+ Y ) _ + I-I + (y-2) I + I
(y-l) Y Y y 2 Y

+ vi z (111-42)
Y

In the last term of gas dynamic equation (111-28), the binomial expansion of

the factor (y+x tana)- has been used which assumes that Ix tanB/y < 1.

r - -I -
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This requirement is certainly met if the one stated in Eq. (111-30) is. Of

interest is the fact that the irrotationality condition retains its simple,

linear form through all orders and that the only nonlinear equation among

the set of gas dynamic governing equations is the first order one. This

behavior is typical of expansion solution techniques.

The boundary conditions which apply to each solution order must also be

obtained in an appropriate form. Only the details for the boundary condi-

tion at the inner wall will be given since the procedure for the outer wall

boundary condition is identical. Transforming from coordinate x to coordi-

nate z, Eq. (111-14) for the inner wall condition becomes,

V(z,g(z)) = [1 + D(z,g(z))] z dz (111-43)dzdx

where the Maclaurin series expansion for the inner contour, Eq. (111-16), is

y = g(z)= Y + (glz + - g2 z2 + g2 z I3

+ Y~1 (. , 2 z 2 E: + .. ,(111-44)

when the definitions and expansions in Eqs. (111-32), (111-33), and (111-35)

are introduced. The derivative dg/dz needed in Eq. (111-43) is,

d y+1 2 +13 2_ f' 4dz 2 Y" +gze +C 2 (gn~ + Y±'1 ~g zC + ... (111-45)

Expansion of the perturbation velocity components at the inner wall in Taylor

series about y = yi yields,

(zg(z)) = Uzy] + ,E, +"

(111-46)

and
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v 
g ( z ) y 2

( z g ( z ) V ' ' y + Y - ' i Y 2 +

I IyI1-4y11ii-47)

The procedure then is to substitute these expansions into boundary condition

(111-43) using the series for 6 and , Eqs. (111-36) and (I11-37), and the

wall contour information, Eqs. (111-44) and (111-45). Gathering and equat-

ing coefficients of powers of t- leads to the following set of inner wall

boundary conditions,

v Iz[,y, gl + g2z (111-48)

= Z y g2nZ + (g1+g2 ZjU 1 (z'y (111-49)

v 3 (Z~Y 3y j g2n2 Z + g2 nZU. (Z'yi ) + (gl +g9 ZIU 2 (z~ Yi

+ 1 g z? 2 1I (111-50)

The boundary conditions along the outer contour are exactly analogous,

v, (z,yJ = h + h2 z (111-51)

v2(Z = h2riz + (h+h2Z]U 1 (Z'Y} (111-52)

V3 (z,y h h2 n2 z + h 2 z u, (z y + (h1+h 2 Z)U2 (z 9yJ

-(+}(h, z + 1 h z} 2 3v 1  (111-53)

In performing these Taylor series expansions about the inner and outer throat

wall locations, it is clear that the boundary conditions are satisfied exactly

only at these points.

Ii -
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The formulations for the various orders of solution in the expansion

technique are now complete. For the first order, n = 1, irrotationality

condition (111-38), gas dynamic equation (111-39), and boundary conditions

(111-48) and (111-51) comprise the formulation. Likewise, Eqs. (111-38),

(111-40), (111-49), and (111-52) are the ones of importance for the second

order, etc. . Once the solutions for the various orders in the expansion

technique have been obtained, the flowfields in the throat region of

annular, supersonic nozzles may be characterized.

B. SOLUTION

The solution technique is similar to that used originally by Hall [35]

and proceeds by first considering the formulation for the first order prob-

lem and then moving to the second and higher order problems. As just men-

tioned, the governing equations and boundary conditions for the first order

are

au1 = 0 (111-38)

u I v + vI
- 2u + - + 1=0 (111-39)Iaz ay y

and

v, z~y. = g, + g2Z (111-48)

v (zY.y = hI + h2z (111-51)

Inspection of boundary conditions (111-48) and (111-51) suggests the

following solution form for v

V I(z,y) = Aj,(y) + A;(y)z , (111-54)

I
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where

'A h2  -55
A'i = AP' =h

and the prime is now used to denote differentiation with respect to y.

Substitution of the vI solution form into irrotationality equation (111-38)

and integration with respect to y results in

u1(z,y) = A1 (y) + B + B1z , (111-57)

where B0 and B are constants and the form of the integrating function is

suggested by Eq. (111-54) for v. The assumption of terms involving higher

powers of z in either Eqs. (111-54) or (111-57) is unnecessary since these

terms would vanish by boundary conditions (III-48) and (111-51) anyway.

The unknown A functions and B constants must still be determined. This

is accomplished by first substituting the expressions for uI and v I, into

the gas dynamic governing equation, (111-39), and gathering coefficients of

similar powers of z. Since the resulting equation is to be satisfied for all

z, these coefficients must vanish which leads to the following two equations,

A'(y) 2
y -

a A(y) + y = 2B (111-58)

and z 0 Ao(y) + = 2B A (y) + 2BoB - - (111-59)

In this manner the problem has been reduced from the solution of the original

set of partial differential equations and boundary conditions to the solution

of the two preceding ordinary differential equations with conditions (111-55)

and (111-56). Equation (111-58) can be integrated once to give

A(y): By + 9 (111-60)
Y

IA
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where the constants B2 and B are determined from the conditions in

Eq. (III-55 -as

-'h y g y yiY

B 2 2 1 0(111-61)

Yo -yi

and

B = 2 Y 2] /2 (111-62)
1 yo

The positive root is chosen in the expression for BI since -u/oz, which is

identically B1 for the first order solution, must be positive for an

accelerating nozzle flow. Investigation of the radicand reveals that it

also is always positive for the nozzle configurations considered here, h2 > 0

and g2 
< 0. Integration of Eq. (111-60) yields

12
A (y) = B1y + B2lny , (111-63)

where an integration constant is unnecessary since it can be considered as

being included with the still undetermined constant Bo in Eq. (111-57) for u .

Substituting this relation for AI(y) into Eq. (111-59) and integrating

once yields

Ao(y) 1 By + BIB2Y'ny + BoB 1 BB2  - B 3 (111-64)

The conditions listed in (111-56) may then be used to determine B3 and B0 as,

h lhY, -glYo-B4Y +Bs~ VY. Y

B3 I g 4y. 5 Yy] (111-65)
3~ 2 2

Y. -yi

and
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h y -B4 yo -B3
B 0 - 2(1 Y11-66)

g where B4 and B5 have been defined as,

1]B3 3 1
B4 lYo + BI B2y':Y0 2 BIB2Y. (111-67)

and

B _ B'y' + B B y. 7 y B (111-68)
5 4 - B B2 Y -4 1 (III-68

The first order solution is complete. The B constants are evaluated in

the following order: B2, Eq. (111-61); B1, Eq. (111-62); B4, Eq. (111-67);

B5 , Eq. (111-68); B3, Eq. (111-65); and B0, Eq. (111-66). With these con-

stants determined, the functions A,(y), A, (y), and Ao(y) are then known from

Eqs. (111-60), (111-63), and (111-64), and ul and vi may be evaluated from

Eqs. (111-57) and (111-54), respectively.

The higher order solutions are obtained in a very similar manner start-

ing from the formulations developed in the preceding section. Solutions

through the first three orders have been found, and as might be guessed from

the form of the gas dynamic governing equations, Eqs. (III-39)-(I1I-42), the

effort required to obtain them increases dramatically as one moves to the

higher order problems. For the second order, v2 and u2 are of the form,

v2 (z,y) = C'(y) + C'(y)z + C(y)z 2  (111-69)o2 C

uc2(zy) = [CI ()+DO] + [2C,(y)+D,]z + 0 2 z2  o(111-70)

requiring the solution of three ordinary differential equations, while the

third order problem requires solving four ordinary differential equations

with v3 and u3 given by,

---
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v3 (z,y) = EO' (y) + E' (y)z + E2'(y)z
2 + E,'(y)z

3  (111-71)

u3(z,y) = E (y)+F0  + 2E (y)+F 'z + 3E3 (y)+F 2 z + Fz 3 . (1II-72)
3L IL 2 -

Lengthy algebraic manipulations are involved, but the form of the differential

equations to be solved is very similar to Eqs. (111-58) and (111-59). As in

the integration of the equations for the first order problem, a large

number of intermediate constants are defined and used, but because of space

limitations the details of the second and third order solutions will not be

presented here. However, a complete solution summary is included in Appendix B.

With the expressions for the (u1 ,v111 (u2 ,v2 1 , and (u,,v 31 perturbation

velocity components determined, other quantities of interest may also be

found. These include: the velocities components u and v in the x-y coordi-

nate system; M*, the ratio of the local speed to the critical speed of sound;

e, the angle of inclination of the velocity vector from the x-axis; the Mach

number, M; and the local static to stagnation pressure ratio, p/po. The

series expansions for these quantities in terms of the perturbation velocity

components are given below,

u(zy) 1 + = 1 + UI: + u2 2 + u3 3 + (111-73)

v(z,y) = Y j v + v2 2 + v 3E + .. (111-74)

M*(z,y) (u2+v21/2 + u C + u2 + u+ .2 +
(111-75)

)(z,y) = tan-'(v/u) : [Y l ,1 V E + (v -u vj }
2

+- ( 3 U v2 U v +U1V~ + ..v (111-76)

3
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2 2 1/

M(ZIy) = 1 + 3 2 2

- 2 U U2  + 4 ,-l)u 1

21 2 3 3 3
+L u  +  

4 v + - ("-l)uu 2 + 8 U +

(111-77)

S(z,y)= M*2/ 2 2

3 4 6UJ.)

Po L y+l :l +- . - (u11-+7u)

-J

The reason that these expansions should be employed is so that the only terms

included are those for which the coefficients of the various powers of C are

completely known. For example, if u and v are first calculated from

Eqs. (111-73) and (111-74) and then M* is determined from the definition

N* = fu2+v2 /2 , information from just one of the many sixth order terms,

2 6
v3  , will be included.

Another quantity of importance is the discharge or flow coefficient, C ,

defined as the ratio of the actual nozzle mass flow to that obtained from the

ideal one-dimensional approximation of uniform, sonic flow at the throat, i.e.,

C0 = ow~ (111-79)
y. x=0I

where in the present notation u has been non-dimensionalized with respect to

the critical speed of sound, a*. Substituting the series expansions for p/p*

and u and the expression for dA/A* into the integrand, the relation for CD

becomes

C = +1- 2 + CD2  
+ CD 2 + ... (111-80)

D ~2 [cD0  D D

Y. --- - .... ,
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after integration, where the constants CD1, CD2 , and CD3 are evaluated as

shown in Appendix B. The reduction in mass flow due to the two-dimensional,

nonuniform nature of the flowfield is generally small and the value of the

discharge coefficient is therefore very close to unity for the configurations

which may be analyzed with the expansion solution developed here.

Thus, with the fu1 ,v13, U2 ,V 2 , and tu 3 , v3 transonic perturbation

velocity components and the C D, CD2, and CD3 discharge coefficient constants

determined, all of the flow variables of interest, including those just pre-

sented, are known to the third order in the present series approximations.

C. SOLUTION CHECKS

Because the development of the solutions described in the preceding

section requires lengthy algebraic manipulations, particularly for the third

order solution, they must be thoroughly checked to ensure their validity.

To accomplish this task two groups of tests have been carried out as shown

in Table 111.1.

The first set of tests involves reducing the solution obtained here for

the general annular configuration to previous solutions for simpler

geometries. The results for the conventional axisymmetric configuration are

found by passing to the limit y, - 0 for a nozzle with a straight inner

boundary, i.e., as the inner wall approaches the axis of symmetry. The

limiting value, y, = 0, cannot be used in the numerical implementation of

the annular solution since this leads to division by zero. However, an

arbitrarily small value, e.g., y, = 10- , may be employed to approximate the

axisymmetric configuration. In a similar manner, the planar symmetric

I,



geometry may be investigated by considering the limit y ", since the

transverse curvature effect becomes negligible in that limit. In this sit-

uation there are two possible wall configurations of interest. Both the

case in which the bounding walls have equal and opposite curvatures and

that in which one of the walls is straight approach the symmetric plane

limit as y -, -; in the latter case, the straight wall may be considered as

the centerline of a symmetric nozzle. Using n = 0 in the expansion param-

eter definition, (Eq. 111-22), the results of the present solution reduce to

those of Hall [351, with corrections by Kliegel and Levine [46], in both

the axisymmetric and plane symmetric limits. Likewise, for n = 2 the solu-

tion developed here is identical to previous, unpublished solutions [87] by

the present author for both the conventional axisymmetric and plane configur-

ations, where c = (R+1]_ was employed as the expansion parameter. It

should be emphasized that neither of these c = (R,+lI-1 solutions for the

axisymmetric case coincide with that of Kliegel and Levine [46] because, as

pointed out in Chapter II, their result is not a solution since it doesn't

satisfy the equations of motion. Rather, it is simply a transformation from

the Hall series in c = R to a series in c = (R+l3"' such that the two

are equivalent as R - -. Except for errors in the third order discharge
C

coefficient constants, the analysis of Thompson and Flack [371 for plane

nozzles can also be reduced to the c = IRC+l)_- solutions mentioned above

for the symmetric, planar case. Another configuration which provides a limit

check on the solution for the general annular nozzle is the specialized case

for which either the inner or outer boundary is straight and parallel to the

axis of symmetry. Results of the two term solutions developed in [87] using

£ = R,+l)1  agree with those of the present solution for n = 2.

- .........
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It is to be noted that when one of the bounding walls is straight, e.g.,

g"(0) 0, the expression for c, Eq. (111-22), simplifies to

h"0O, (111-81)-2 + nh (0) '( 1 - 1

which is equivalent to

= +j (111-82)

since h"(O) = R, if h'(0) = 0. Because of the presence of the factor 2 in
C

Eq. (111-82) it might be expected that for cases with one straight boundary,

different results would be obtained with the present analysis than with pre-

vious analyses which use either E = RC-1 or e = R,+lJ-1 as the expansion

parameter. However, if the formulation of the precent investigation is care-

fully studied, it is found that n enters the problem only as the product nE

through the boundary conditions, Eqs. (111-32) and (111-33). As long as this

product is the same for two solutions, the results obtained with them will be

identical regardless of the numerical coefficient of R in the expansion
C

parameter. Therefore, no generality is lost by employing the definitions

given in Eqs. (111-20)-(111-22) for E. This explains why all of the n = 0

solutions produce identical results independent of the c definition and also

why the n = 2 case in the present technique corresponds with the previous

c = (RC+lY" analyses.

The reduction tests just discussed were generally carried out numerically

by comparing the discharge coefficient constants CD1, CD29 and CD3 and the

transonic perturbation velocity components (Ul,V,], (u2 ,v 2 ), and (u3 ,v3]

obtained with the present solution to those obtained from earlier solutions

for the specialized configurations. As demonstrated by the expansions given

- - - -"-- - - -- - - - - - .- - i - -i - - i i --
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in Eqs. (111-73)-(111-78) and (111-80), these parameters completely specify

the quantities of interest. The perturbation velocity comparisons were

made by evaluating the components at a number of y locations on planes of

constant x through the throat region. Only for the limiting case of the

I conventional axisymmetric nozzle is it convenient to simplifv the general

solution analytically. Since this is a special case of great practical

importance, the resulting solution is summarized in Appendix C, where the

expansion parameter has been taken as c = R,+nj . For n 0 this is a new

and very useful result.

The second group of tests involves numerically back substituting the

solutions for the various orders ,into the corresponding governing equations,

(111-38)-(111-42), and boundary conditions, (111-48)-(111-53) and evaluating

the residuals. The partial derivatives in these equations are approximated

by using second order, central, finite differences for all z-derivatives and

for y-derivatives at interior points and either forward or backward, second

order differences for the y-derivatives at boundary points. This scheme pro-

vides a powerful means of checking the solution given its formulation and can

be used to verify it in this sense.

The satisfaction of the governing equations, (111-38)-(111-42), as

measured by the size of the residuals, was tested at a number of y-locations

ranging from the inner to the outer boundary on planes of constant x through

the throat region. The boundary conditions were also checked at various x

stations through this region. In addition, the tests were carried out for a

large number of geometrical configurations and specific heat ratios for the

gas so that all of the significant parameters were varied. In all cases it

SI



54

was found that the residuals for the equations and boundary conditions were

0 108 or smaller when a grid spacing of '.x = ly = 10-4 was used for the

di fferencing.

The results of the two sets of tests described above provide strong

evidence of the correctness of the solution developed in the preceding sec-

tion. It is felt, therefore, that the results of this analysis can be used

with confidence to predict the flowfields in the throat regions of annular,

supersonic nozzles.

D. PARAMETRIC STUDY OF SOLUTION BEHAVIOR

So far no mention has been nade either of the convergence properties of

the series solution which has been developed or its range of applicability

to various geometrical configurations, etc. . The purpose of this section

is to present the results of a comprehensive, numerical study whose objec-

tive was to parametrically investigate these questions.

As mentioned in the first section of this chapter, the order of magni-

tude estimate, y = 0(1) or larger, was made, and the origin of the x-y

coordinate system was taken to lie on the axis of symmetry so that annular

configurations whose throats are near the axis can be analyzed. These

geometries are of prime importance for the supersonic-supersonic ejector

application, and use of this estimate also means that the solution may be

applied to conventional axisymmetric nozzles. However, for annular axi-

symmetric, or in the limiting case, planar configurations for which the

dimensionless distance from the symmetry axis to the throat region is large,

y >> 1, the evaluation of the transonic series solution involves sums and

I
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differences of very large terms since the constants and functions are pro-

portional to powers of y. , y, an, y. This situation, of course, can lead

to roundoff errors in the numerical implementation; the appearance of these

errors depends on the precision of the machine being used. Therefore, the

g first set of studies which was carried out simply determined the y-distance

from the axis of symmetry at which roundoff errors began to significantly

affect the solution when evaluated on the University of Illinois CDC Cyber

175 digital computer. Both single precision (14 digit accuracy) and double

precision (29 digit accuracy) versions of the subroutine which performs all

of the constant and function evaluations for the series solution were

tested. As expected, it was found that the only significant parameter in

these tests was y,, the dimensionless distance from the axis of symmetry to

the inner nozzle wall. This quantity may be used to characterize the axis-

to-throat distance since y, _ y < y. and y. - yi 1 in the region of

interest. Other parameters such as , the angle between the throat axis

and the symmetry axis, q, the parameter in the expansion variable defini-

tion, R and R , the wall radii of curvature, etc., were found not to

affect the appearance of roundoff errors.

The results for the upper limits on yi for avoiding roundoff errors in

the determination of the various orders of perturbation velocity components,

(U, ,v 1} (u2 ,v 2 ), and (u,,v, are shown in part (a) of Table 111.2. The

single precision limits were found by noting the y, value at which the

single precision results for the velocity components in the throat plane

deviate significantly [0(0.1%)] from the double precision values, while the

double precision limits were found by observing the value of yi at which the

Aft-
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double precision values deviate significantly L3.(0.1;)3 from those of the

planar limit which is asymptotically approached as yi -... If all three

orders in the series solution are employed, the limit for single precision

is approximately y, = 15; this includes the axisynmetric-no centerbody case

and most annular geometries of interest. The double precision limit is

yi = 1000, which provides a very good approximation to the plane configura-

tion. If only two terms of the solution are used, the limits are yi = 60

and y, = 30,000, respectively, for single and double precision, etc. The

reason that the limits are relaxed for the lower orders is that their solu-

tions involve lower powers of y than does the third order solution.

Since the derivation of the discharge coefficient, C , requires the

integration of the density-u velocity component product across the throat

plane, the constants involved in its evaluation contain higher powers of yi

and Y, than do the velocity components themselves. Thus, the upper limits

on y, for avoiding roundoff errors are more restrictive for CD as shown in

part (b) of Table 111.2. The technique used to determine these limits was

similar to that previously discussed for the perturbation velocity com-

ponents except that in this case it was the flow coefficient constants, C D,

CD2, and CD3 that were monitored. For solutions involving all three orders,

the limit on yi is approximately 10 for single precision and 250 for double

precision. However, since the value of the discharge coefficient is so

close to 1.0 for all of the configurations for which the analysis applies,

i.e., for R >0(1): .98 < CD < 1.0, the discharge coefficient, with it;

more stringent limits, is of less interest than the velocity components.

This is particularly true since one of the primary purposes of the nozzle

I
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throat analysis is to establish an accurate initial value line for analyzing

I the supersonic portion of the flowfield using, e.g., the method of

characteristics.

I At this point it should be mentioned that the numerical implementation

I of the series solution is extremely fast on the Cyber 175. A typical prob-

lem requires less than a second of execution time when the single precision

version / the constant-evaluating subroutine is used and less than two

seconds when the double precision version is employed. For this reason the

double precision form is routinely used, and as can be deduced from the pre-

ceding discussion, it provides throat flowfield information for a wide

variety of configurations. Conventional axisynietric, annular, and planar

geometries can all be analyzed as the distance from the axis to the inner

boundary is increased from zero to the limiting value for avoiding roundoff

errors.

Once these limits on the axis-to-throat distance were established, a

second series of studies was performed to observe the behavior of the

1 transonic series solution over a wide range of parameters for nozzles with

circular arc contours. The parameters involved in the analysis are: y,

I the specific heat ratio of the flowing gas; q, the parameter in the expansion

Ivariable definition, Eq. (111-22); the geometrical configuration of the

nozzle including y,, R, R, and B; and the number of terms of the expansion

solution to be included, i.e., first, second, or third order solutions.

There are an infinite number of possible geometries and values of y and n as

well as the three possible solution orders which can be investigated.

Obviously, then, these must be limited in a significant and useful way in

I
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order to effectively study the solution behavior. First, it was found that

the solutions are not strongly dependent on I so that only the usual

diatomic value of 1.4 was used. Hence, it is assumed that the analysis

correctly predicts the weak parametric dependence upon this physical

property. Five values of , were employed, i = 0, 0.5, 1, 2, and 4, and

each of the three solution orders was considered. In addition, twelve total

configurations were analyzed with three values of the radius of curvature,

R = 0.625, 2, and 5, utilized in each of four groups of geometries. These
C

configurations are defined and shown in Fig. 111.2: (1) conventional axi-

symmetric; (2) annular axisymmetric with the outer boundary straight and

parallel to the axis of symmetry, y, = 2; (3) annular with the inner radius

of curvature twice that of the outer and the x-axis inclined at roughly

+ 200 to the axis of synmetry, yi = 5.3; and (4) an approximately plane

symmetric configuration with y, = 100. The value R = 0.625 was chosen
C

since a dimensionless wall radius of curvature less than unity was desired

and this was the radius of curvature value for the axisymmetric nozzle

tested by Cuffel, et al. [30]. As mentioned in Chapter II, this is the only

experimental investigation to date in which flowfield measurements have been

obtained for an axisymmetric configuration.

With these 60 combinations of nozzle geometry and n, the following

studies were performed. For each case, the M = 0.8, 1.0, and 1.2 constant

Mach number contours were first found and plotted as one, two, and three

terms of the expansion solution were included. These plots provide graphi-

cal information concerning the convergence properties of the solution over

the range of parameters investigated. The convergence was further studied
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2 2 3 3

by printing the quantities u1 , v1 , U2 - , v2  , u3 r , and v3 3 at a number

of points along the loci of the third order iso-Mach curves and noting

whether the following inequalities were satisfied: u'. u ,

U 3 2 < 1u2 , etc. In a similar manner, the discharge coefficient inequal-

f ities, CD 2c! < !C and C 1 were also investigated for each

configuration. Satisfaction of these inequalities indicates that the series

solution is convergent for the combination of parameters under consideration.

The final set of tests in this series involved evaluating the u and v

velocity components from the first, second, and third order solutions at a

number of points along the third order M = 0.8, 1.0, and 1.2 constant Mach

number curves and substituting these values into the exact governing equa-

tions. In this context "exact" is used to denote a form of the equations in

which no order of magnitude simplifications have been made or expansions

assumed. The equations which were utilized in this study are irrotationality

condition (111-8) and gas dynamic equation (111-9), repeated here for

convenience,

u - v = 0 (111-8)
y x

Flu Y+l Iu - Y--TUVU + - +

+ _l u U2-.y V2 (v cos8 + u sin)+ y+l y+l I= 0 (III-9)

y cos a + x sin

Whereas the identical satisfaction of the equations and boundary conditions

in the expansion formulation, Eqs. (III-38)-(III-42) and (I1I-48)-(11I-53),

verifies the details of the solution development as discussed in the preceding

section, the size of the residuals in the exact equations above provides a

!
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measure of the validity of the approximations made during the course of tne

formulation. Comparison of the residuals among the various cases studied

also allows conclusions to be drawn concerning the effects of the parameters

on the various assumptions and approximations which have been made. As in

the solution verification studies, the derivatives in the exact governing

equations have been approximated by second order, finite differences with d

grid spacing of -'x = Ay = 10-4.

The exact boundary conditions that the velocity vector be tangent to

the bounding walls was also checked along each contour from the M = 0.8 loca-

tion to the M = 1.2 location. This interval was widened in order to include

the throat station for those cases in which it was not already included.

The exact boundary conditions were investigated in the form,

[dRZZ - tan(O+6)] = 0 (111-83)

(R,Z) =0

d Z - tan(6+6)]l: 0, (111-84)
H( R,Z) =0

where G(R,Z) = 0 and H(R,Z) = 0 are the equations of the inner and outer con-

tours and (0+s) is the inclination angle of the velocity vector in the

cylindrical R-Z coordinate system.

The basic purpose of these studies was to investigate in an organized

and rational manner the convergence properties of the solution and to deter-

mine if an optimum value of the parameter n could be found that provided

improved solution convergence and simultaneously minimized the residuals in

the exact governing equations and boundary conditions. The main conclusions

of this investigation are discussed below.

!
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(1) As expected from the problem formulation, all orders of the expan-

sion solution identically satisfy both the exact irrotationality condition

and the boundary conditions for straight walls. Therefore, the significant

tests are the residuals for the exact gas dynamic equation and for the

boundary conditions at curved contours, as well as the convergence prop-

erties of the series solution.

(2) For the smallest wall radius of curvature tested in each of the

groups of geometries, R = 0.625, the solutions are highly divergent forc

ni = 0, Fig. 111.3. This behavior is also expected since for Y = 0 the solu-

tions correspond to those of Hall [35] who used the expansion parameter

F = R 1, and for R < 1 this expansion parameter exceeds unity. As n isC C

increased for these configurations, the convergence of the solutions is

dramatically improved, Fig. 111.4, although for the highest value tested

here, n = 4, the solutions tend to be only slowly convergent, especially away

from the sonic line. Interestingly, as n is increased from zero for these

small radius of curvature geometries, the convergence of the higher Mach

j number contours is improved first.

(3) For configurations with large radius of curvature boundaries, the

high subsonic, i.e., M = 0.8, constant Mach number contours are less con-

vergent than the low supersonic, i.e., M = 1.2, ones for n = 0, Fig. 111.5.

For larger values of q, improved convergence of the high subsonic iso-Mach

curves is obtained somewhat at the expense of the convergence of the low

supersonic ones, Fig. 111.6. It should also be mentioned that for nozzles

with a large throat wall radius of curvature, there is little difference

between the third order constant Mach number contours for various values of q.

- , - _
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(4) For 0, the expansion solution is generally an alternating

series, such that the third order iso-Mach curve for a particular Mach num-

ber lies between those of the first and second order, Fig. 111.7. As - is

increased, the nature of the solution gradually changes until at n = 4 it is

a slowly convergent, non-alternating type series, Fig. 111.8.

(5) For geometries and values of - for which the solutions are conver-

gent, the residuals in the gas dynamic equation are generally reduced as the

order of the solution is increased from the first to the second to the third

order. The residuals in the boundary conditions for the circular arc

boundaries are also generally reduced as the higher order solutions are

utilized with this trend becoming very strong as n is increased from zero.

(6) It appears that the dependence of the residuals in the gas dynamic

equation upon n is directly related to the convergence of the series solu-

tion. Thus, those values of n which result in improved convergence prop-

erties for the expansion solution also generally result in reduced residuals

in the gas dynamic equation.

(7) The residuals in the exact boundary conditions for the circular

boundaries are increased near the throat location as n is increased from

zero, particularly for the larger values of n. This behavior is consistent

with the observations from Eqs. (111-32) and (111-33) that the second

derivatives in the Maclaurin series expansions for the wall contours are

exactly matched only for n = 0 and that the approximations deteriorate pro-

gressively as n is increased.

(B) As found by previous investigators, the geometrical parameter

which is by far the most influential is the radius of curvature of the

!
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bounding walls. For nozzles having a large radius of curvature, the solution

behavior is generally improved over that for nozzles with sharp throat

curvature, i.e., the residuals in the gas dynamic equation and boundary

i conditions are reduced and the solutions are more convergent. This behavior

is, of course, expected since the expansion parameter has been defined as

="R+ r  
. The parametric effects on the solution behavior of the distance

of the nozzle throat from the axis of symmetry and the inclination of the

main flow x-direction from the axis are generally negligible so that the

dependence of the solution on n, the solution order, and the wall radius of

curvature discussed previously are repeated in each of the four groups of

geometries sketched in Fig. 111.2. Two exceptions to this statement are:

(a) For cases in which both boundaries are curved it

appears that the shift in solution nature from an

I alternating type series to a non-alternating one

occurs at lower values of n than for those cases

in which one boundary is straight.

(b) For the smallest radius of curvature cases tested in

each of the four geometrical groups, the solution

I for the conventional axisymmetric configuration,

yi = 0, appears to be the best behaved. For the

other three sharp curvature cases, the M = 0.8, and

j in two cases, the M = 1.0 contours were found not to

intersect the highly curved wall, Fig. 111.9.

Based on the preceding observations, it is concluded that third order

solutions should generally be used. Also, for configurations with a large

I
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wall radius of curvature, the expansion solution is essentially independent

of n. However, for geometries with small radius of curvature walls, two

competing effects appear: as n is increased from zero the convergence of

the series solution is improved significantly, but the satisfaction of the

exact boundary conditions in the throat region is compromised, especially

for the largest value tested, r- = 4. Ideally, then, the smallest value of T-

for which the convergence properties in the region of interest are deemed

satisfactory should be employed. For general use n = 2 is recommended.'

Third order, n = 2 solutions are compared to two existing data sets in

Figs. III.10 and 111.11. In the first figure comparison is made to the data

of Cuffel, et al. (301 for an axisymmetric nozzle with a dimensionless wall

radius of curvature of R = 0.625. As mentioned in Chapter II, this data
c

was obtained by means of a small diameter, hollow tube which was stretched

between an upstream stagnation chamber and a downstream vacuum chamber.

This small value or R provides a severe test for the expansion solution, and

as can be seen in the figure, the results are in reasonably good agreement

with the data through the throat region except for the high subsonic Mach

numbers, M = 0.6 and M = 0.8. In particular, the M = 1.2 contour appears to

provide an accurate starting line for initiating the hyperbolic computations

for the supersonic region. In Fig. III.11 the results of the series solution

are compared to the sonic line data of Flack and Thompson [14] for a planar,

symmetric nozzle with a wall curvature of R = 2. The experimental informa-C

tion was determined by using static pressure measurements obtained from

tThe equivalent recommended value for the simplified, conventional axisym-

metric solution, Appendix C, is n 1.
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pressure taps located in the sidewalls of the nozzle. For the theoretical

results, the plane, two-dimensional geometry has been approximated by an

annular configuration located a very large dimensionless distance from the

I axis of symmetry, y, = 1000. As shown in the figure, the analytical and

experimental sonic lines are of the same shape with the measurements lying

somewhat downstream of the series results. The agreement is within approxi-

mately 3 percent, however, since calculation of the Mach numbers along the

experimental sonic line using the expansion solution results in values of

about 1.03.

As a result of the parametric studies and comparisons presented in this

section, it is felt that the approximate solution which has been developed

is applicable to a wide variety of nozzle configurations including axisym-

metric, annular, and planar ones. As long as the radius of curvature of the

bounding walls is of the order of the throat half-height or larger, and as

long as attention is restricted to the transonic throat region, x = o(C /2

with the inclination angle satisfying the restriction, Bl/y = O(1), satis-

factory results are expected. Further comparisons between the theoretical

solution and experimental measurements obtained during the course of this

investigation are presented in the next chapter.

I-
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R

H(R,Z)=O
Y y= h(x)

(Zo,Ro) V

(0 , 0) L U G(R,Z)=0

v \d yg(x)

\2' >(Zi, R i)X (O,y )

( Q) Z

(0,0)

Figure 111.1 Configuration for throat flowfield analysis of

annular supersonic nozzles
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I
I Table III. Solution Tests

I. Reduction to Previous Solutions for Simpler Geometries

A. Reduction to Conventional Axisymmetric Configuration as y, - 0

1. r = 0 -- Hall [35], with corrections by Kliegel and Levine [46].
2. n = 2-- Dutton [87].

I B. Reduction to Planar Symmetric Configuration as y. -

1. n = 0 -- Hall [35].
2. n = 2 -- Dutton [87] and Thompson and Flack [37).

C. Reduction to Annular Axisymmetric Configuration with One Boundary
Straight and Parallel to the Axis of Symmetry.

1. n = 2, g"(O) = 0 -- Dutton [87].
2. i = 2, h"(O) = 0 -- Dutton [87].

II. Independent Numerical Back Substitution into the Governing Equations and
Boundary Conditions (Derivatives approximated with finite differences)

I
I
I
I
1
I
I
I
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Table 111.2 Roundoff Error investigation

(a) Approximate values of y at which r6undoff errort affects solutions
for perturbation velocity components:

Single Precision Double Precision

First Order
u 1 ,v 3000 -10

Second Order
U V 60 30,000

Third Order
(u3 ,v 3  15 1000

(b) Approximate values of y. at which roundoff error t affects solutions
for discharge coefficienit constants:

Single Precision Double Precision

First Order
(CDI 120 50,000

Second Order
(CD 2 J 20 1500

Third Order
(CD 3 ) 10 250

tOn the University of Illinois CDC Cyber 175 digital computer
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(a) Conventional axisyncnetric

IR

Rci = 0.625,2,5
2

(b) Annular axisymmetric with straight outer boundary, yi 2

Figure 111.2 Configurations for parametric study of solution behavior
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jR
Rco= 0.625,2,5

2

R = 1.25,4,10 5

J_ Z
(c) Inclined, annular axisymmetric with R. = 2R , +200,

y 5- 5.3

R

Rco 0.625,2,5

_Y__
= 100

Z
(d) Approximately plane symmetric, y, = 100

Figure 111.2 (cont.) Configurations for parametric study of
solution behavior
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Figure 111.6 M = 0.8, 1.0, and 1.2 contours for annular configuration,
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Figure 111.7 M = 0.8, 1.0, and 1.2 contours for approximately planar

configuration, R = 2, y, = 100, n = 0
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Figure 111.8 M =0.8, 1.0, and 1.2 contours for approximately planar
configuration, Rr 2, y. = 100, n = 4
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Figure III.10 Comparison of third order, n = 2 solutions to data
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IV. EXPERIMENTAL INVESTIGATION

I As discussed in the literature survey, there have been few experimental

g studies of supersonic nozzle throat flows, particularly in terms of flow-

field measurements for axisymmetric configurations. For this reason, an

experimental investigation was performed to obtain flowfield pressure dis-

tributions for a number of annular nozzle geometries including a conventional

axisymmetric nozzle. For the annular configurations, these measurements are

g the first ones known to consider more than just the wall pressure distribu-

*tion along one of the bounding walls, while the data of Cuffel, et al. (30]

is the only other set of flowfield data for the axisymmetric, no-centerbody

case. The resulting measurements provide a basis of comparison in order both

I to verify the theoretical solution developed in the preceding chapter and to

j draw conclusions regarding its range of applicability.

A. EQUIPMENT AND APPARATUS

The main objections to the stretched tube technique employed in [30] to

obtain the nozzle throat flowfield pressure distributions are that the tube

introduces disturbances of unknown magnitude into the flowfield and for off-

I axis positions the velocity vector is not necessarily parallel to the tube.

Rather than using this method, the one which has been utilized in this study

is the splitter-plate technique whereby half-section cylindrical models were

constructed and mounted on a plate whose surface corresponds to a symmetry

plane for the axisymmetric geometry. Pressure taps were placed on the

I splitter plate in the transonic region of interest from which the desired

transverse and streamwise pressure distributions were obtained.

I"AV-
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The splitter plate also introduces disturbances into the flowfield in

the form of the boundary layers which grow both on the plate and in the

corners where the half-models meet the plate. These boundary layers, of

course, are not present for the full axisyrmetric configuration. However,

for the high Reynolds number, favorable pressure gradient, nozzle flows under

consideration, the boundary layers in the throat region are extremely thin.

In fact, sample calculations using the code developed in [88] show that for

the models and typical operating conditions used here, the boundary layer

displacement thickness in the throat region is less than 0.05 mm which is

less than 0.2% of the throat diameter in the worst case. It is therefore

felt that the measurements obtained with the half-section models correspond

closely to the "true" measurements for the full axisymmetric geometries. To

further test this hypothesis both a full-section and the corresponding half-

section models were constructed for a conventional axisymmetric nozzle con-

figuration. Comparison of the wall pressure measurements from the two models

then allows conclusions to be drawn regarding the effects of the splitter

boundary layers. The results of these experiments will be reported in a

later section.

Figure IV.l is a photograph of the full section axisymmetric nozzle

which was designed and constructed showing the wall pressure taps which were

spiraled around the circumference of the nozzle through the throat region.

Also visible in this photograph are the last few static holes which were

carefully drilled normal to the wall contour; all burrs and irregularities

were removed at the wall in the vicinity of the pressure taps. Unless

specifically stated otherwise, the static holes all have the same diameter

r4m
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of 0.51 mm ind the model material is aluminum. Figure IV.2 shows the corre-

sponding half-section axisymmetric model. The half-nozzle in the right

background is mounted on the splitter plate in the foreground where the flow

I direction is from left to right. The entrance plate, which forms the left

half of the splitter plate, fits inside an existing axisymmetric converging

nozzle whose elliptic entrance section matches the curved boundaries of the

entrance plate. The blocking flange in the left background is attached and

sealed to the bottom of the splitter plate so that no flow is allowed to

leak through the test section under the plate. In addition to the 8 wall

taps on the half-nozzle which were used to obtain the wall pressure distribu-

tion for comparison with that of the full nozzle, 71 static pressure taps

were located on the splitter plate so that the flowfield pressure distribu-

tions could be measured for this axisymmetric nozzle. These taps have been

arranged in 12 staggered rows thereby providing throat region pressure

measurements in a square grid, 3.81 mm on a side. It should also be mentioned

Ithat when the experiments were performed, the screw heads seen on the surface

I of the entrance plate were filled in with epoxy and sanded so that the entire

surface of the splitter plate was extremely smooth and highly polished.

In order to obtain data for annular configurations, the centerbody shown

in Fig. IV.3 is added. It should be noted that in terms of the theory pre-

.| sented in the last chapter, only the central portion of the centerbody, whose

Iradius of curvature in the meridional plane is 50.8 mm, is of importance.

The cylindrical sections upstream and downstream of this region merely pro-

vide a means for attaching the centerbody to the splitter plate. By displac-

ing the centerbody relative to the outer nozzle, measurements for various

Af
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annular configurations could be made. As will be discussed in more detail in

a later section, three such configurations were investigated. The splitter

plate in this case is not the same one used for the conventional axisymmetric

geometry of Fig. IV.2 since a slot is required for the centerbody wall taps

and dowel pin and bolt holes are required to locate and hold the centerbody

on the plate. The pressure taps on the splitter plate in this case have

been arranged in 10 alternating rows of 5 taps each so that pressure measure-

ments in a square, 3.18 mm grid are obtained. The measurements from these

50 splitter plate taps together with the 9 centerbody wall taps and the 8

nozzle wall taps allow the pressure field in the annular nozzle throat to be

completely mapped.

Two views of the assembled apparatus of Fig. IV.3 are shown in Figs. IV.4

and IV.5. In Fig. IV.4, the view is in the downstream flow direction through

the test section. In viewing this photograph, it should be remembered that

the entrance plate is highly polished aluminum so that everything seen on its

surface is a reflection from the half-nozzle mounted on the splitter plate.

The pressure tap grid is detailed in Fig. IV.5, which looks upstream through

the measurement region. The shorter row of taps seen below the plate is the

set which passes through the slot in the splitter plate and is attached to

the centerbody for measurement of its wall pressure distribution. In assembl-

ing the half-section models, Loctite anaerobic adhesive was used on all of the

flat mating surfaces and silicone rubber sealant was also employed along all

seams in noncritical regions. Together with the O-rings which were utilized

between mating flanges, this sealing method prevented the occurrence of leaks

in the half-model test sections.

I:
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I
A photograph of the partially assembled, annular, supersonic nozzle

5 test section, as it is mounted on the brass converging inlet nozzle, is given

in Fig. IV.6. The converging nozzle, in turn, is bolted to the faceplate of

I one of the test stands in the supersonic wind tunnel area of the Mechanical

i Engineering Laboratory. However, the supersonic jet cannot simply be

exhausted to ambient conditions because of the very high noise levels

I associatt2 with such a jet. Instead, the test section is connected to the

facility silencing system. In this arrangement the supersonic jet exhausts

into a viewing chamber which also contains a conically convergent jet-

fcatcher/diffuser. A view of the annular nozzle test apparatus as seen

through one of the side windows of the exit chamber is shown in Fig. IV.7.

Downstream of this chamber the jet flow enters a double-walled silencing

duct before passing through a final silencer and exiting to atmosphere out-

I side of the laboratory. An overall view of the assembled test apparatus is

I given in Fig. IV.8 showing the first few feet of the double-walled silencing

duct at the right. Dry, filtered, compressed air is supplied to the stagna-

tion test chamber by a Gardner-Denver screw compressor through a 140 m3 tank

farm and a 152.4 mm supply line. The pressure in the stagnation chamber is

I regulated by means of a Fisher-Governor automatic controller and control

valve. A schematic of the air flow circuit is presented in Fig. IV.9.

Pressures were measured with two CEC type 4-312 unbonded strain gage

pressure transducers. A 0-700 kPa gage transducer was utilized in conjunc-

tion with a 48-port, motor-driven model J Scanivalve to record the test sec-

Ition static pressures. The stagnation chamber pressure was also continuously

monitored by means of a 0-1000 kPa gage transducer. These pressure signals

I
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were conditioned with two Daytronic model 870 conditioner-amplifier modules.

The resulting output signals were recorded from a Daytronic model 890 digi-

tal meter and a Keithley model 179 digital voltmeter for the stagnation and

static pressures, respectively. Additional equipment used in the course of

the experiments is also described in the next section.

B. PROCEDURE

The first step in the experimental procedure involved calibration of the

pressure transducers. This was accomplished by using vacuum and pressure

sources in conjunction with two pressure measurement standards: a Wallace

and Tiernan precision mercury manometer for the 0-200 kPa absolute pressure

range and a Wallace and Tiernan bourdon tube absolute pressure gage for the

200-500 kPa range. Of the two devices the precision manometer is the more

accurate, but it is limited to the lower pressure range by the allowable

height of the mercury column. The calibrations were completed by obtaining

linear, least-squares regressions between the digital readings of the output

devices and the readings from the precision manometer and the absolute gage.

For both transducers the calibration data was found to be extremely linear.

After the hardware for a given model configuration had been assembled,

the experimental procedure for each test consisted first of recording the

atmospheric pressure from a Setra Systems electronic barometer. The stagna-

tion supply pressure was then set with the Fisher-Governor automatic con-

troller and the static and stagnation chamber pressures read from the digital

output devices as the Scanivalve was stepped from port to port with its

solenoid controller. Since the half-section models all had more than 48

static taps, which is the number of available Scanivalve ports, approximately
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half of the taps were connected to the Scanivalve for a given run and the

rest were blocked off. In later tests these connections were reversed. The

supply pressure in all of the experiments was approximately 400 kPa. It was

I not possible to vary this pressure level over a wide range since it had to

i be high enough to ensure that the measurement region was free from the shock

waves which occur due to the exit boundary conditions but low enough so that

sufficient time vdis available to record the data in these blowdown tests.

For these reasons the Reynolds number based on sonic conditions and the

I throat height, Re2 d, also was not varied over a wide range.

To check tie repeatability of the experiments, five runs were made for

each geometrical arrangement. For each tap the data was reduced by calculat-

ing the mean and standard deviation of the static-to-stagnation pressure

ratio readings, p/po, for the five tests. The resulting mean values were

used in all of the data presented in the next section. In all cases the

experiments were found to be highly repeatable. The standard deviation for

a given measurement was generally less than 10- in units of p/po where this

Ivariable spans almost the entire range from unity to zero through the

transonic throat region. This corresponds to a Mach number standard devia-

I tion of 1.6 x lO- at sonic conditions.

Before presenting the experimental results it is appropriate to discuss

the accuracy of the equipment used to obtain the pressure measurements. By

f utilizing micrometers and other precision measurement gages, the critical

dimensions of the air flow models, including the static hole locations, were

checked and found to be within + 0.05 mm of the design specifications. Since

the throat diameters of the models range from approximately 32 to 50 mm and

- A m i-
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since the static holes are 0.51 mm in diameter, the inaccuracies incurred in

the precision machinework may be considered negligible. For the pressure

measurements, the least accurate device used in the calibration procedure

and the determination of atmospheric pressure was the 0-1000 kPa bourdon

tube absolute pressure gage. The accuracy of this device is listed as

+ 0.7 kPa. Considering the additional effects of calibration nonlinearity,

amplifier drift, measurement fluctuations, etc., it is felt that the com-

bined accuracy of the pressure measurement equipment is within + 1.5 kPa.

However, since the data is generally presented in terms of the Mach

number rather than the pressure ratio, it is natural to inquire how the

inaccuracies in the individual measurements of the static and stagnation

pressures affect the determination of the Mach number. This question can be

answered by utilizing functional uncertainty analysis which is a technique

whereby the fractional uncertainty of a functional relationship is calculated

from the uncertainties of the individual measurements involved in it. As

such it excludes the random errors of particular measurements and is concerned

only with the accuracy of the measuring devices, or systematic error. The

fractional uncertainty of a function F which depends on i variables, F = F(xI,

is given by the expression [89],

U(F) aZnF U i
F = [ ]3/(IV-l)

where U is used to denote the uncertainty. For the case at hand, the isen-

tropic relation,

p- [I + 2 M2 ], (IV-2)



I
89I

is employed to convert the pressure ratio to the corresponding Mach number.

Using logariLhmic differentiation, it is easily shown that,

1 + J M2

Z _ M - 2 (IV-3)po " 7:p M 2

Therefore, the fractional uncertainty for the Mach number may be determined

from,

M21/2

U(M) L /L + [ 12 p ]2j1 (Iv-4)

Using 1.5 kPa as the uncertainty of both the static and stagnation pressure

measurements and 400 kPa as the value of the stagnation pressure for these

experiments, the corresponding fractional uncertainty of the Mach number can

be calculated through the transonic region. For M = 0.6 a value of 1.3% is

obtained, while for M = 1.4 the fractional uncertainty in the Mach number is

0.63%. Similarly, the fractional uncertainty for the static-to-stagnation

pressure ratio, p/p0, is found to be 0.61% at M = 0.6 and 1.25% at M = 1.4.

Thus the inaccuracies in the determination of both the Mach number and pres-

sure ratio attributable to the measuring devices are expected to be on the

order of one percent for the flowfields investigated here.

C. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Experimental measurements for a conventional axisymmetric configuration

and three annular ones were obtained. A half-section drawing of the particu-

lar annular arrangement for which the centers of curvature of both the inner

and outer wall contours lie along the Z = 0 plane is presented in Fig. IV.lO.

All dimensions are in millimeters. The air flow enters the test section from

T I
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the stagnation chamber at the left where it is first accelerated through the

converging nozzle with its elliptical entrance section. At the exit of the

converging nozzle the flow cross-sectional area has been reduced to a

50.8 mm radius. Further acceleration then occurs in the annular supersonic

nozzle. Along the outer nozzle wall, a constant area cylindrical region is

followed by 37.50 conically convergent section which is tangent to a circular

arc contour. In the meridional plane, the radius of curvature of this arc

is 25.4 mm, and the radial distance to the minimum point on the outer wall

contour is also 25.4 mm. Along the centerbody, the flow is first accelerated

from the stagnation point through a 25.4 mm radius arc to a cylindrical

region with a 6.4 mm radius. This section is followed by a circular arc con-

tour whose radius of curvature is 50.8 mm and a second, downstream cylindri-

cal region with a 6.4 mm radius. The radial distance to the maximum point on

the centerbody contour is 9.5 mm. For the axisymmetric, Laval nozzle case,

the dimensions for the outer nozzle are identical, and the centerbody is

simply removed. The other two annular configurations are obtained by dis-

placing the centerbody relative to the outer nozzle both upstream and down-

stream by 12.7 mm. For these two configurations the main flow x-direction is

inclined with respect to the Z-axis of symmetry.

To facilitate comparisons between the various configurations, the coordi-

nate system used in the presentation of the data is the R-Z cylindrical system

shown in Fig. IV.l0. In this case the radial R-axis passes through the mini-

mum point on the outer wall contour and the non-dimensionalizing length is

chosen as the radial distance to this minimum point. This distance is also

the same as the radius of curvature of the outer wall, 25.4 mm (or 1 inch).

i ,,
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In Fig. IV.11 the wall measurements from the full- and half-section

models for the conventional axisymmetric configuration are compared. The

pressure measurements were converted to Mach numbers using the isentropic

relation, Eq. (IV-2), and for this case, the wall radius of curvature is

equal to the throat half-height, R = 1.0. As can be seen in the figure,
C

the wall Mach number measurements for the two models are essentially identi-

cal, with the root-mean-square difference between the data sets calculated to

be (AM)r. = 0.89 x 10-2 . For the first two and last four pressure taps in

the streamwise direction, the Mach numbers measured with the half-section

model are slightly higher, while at the remaining two axial stations,

Z = - 0.3 and Z = - 0.15, the Mach number data for the full axisymmetric

model is higher. These small, somewhat random differences between the mea-

surements could, in part, be due to slight differences in the pressure tap

locations for the two models since precise location of the taps on the curved

walls was difficult both to achieve and to check. In any event, the very

near coincidence of the two data sets lends credence to the argument that the

measurements from the half-models should closely approximate those for the

corresponding full axisymmetric geometries. Due to its thinness, the bound-

ary layer on the splitter plate apparently has little effect on these

measurements.

Also shown in Fig. IV.II are the inviscid, wall Mach number results

obtained from one-dimensional, isentropic, flow with area change analysis

and also from the series solution developed in Chapter III. As in all of the

comparisons to be made in this section, the third order, n = 2 expansion

results are utilized as recommended in section III.D. From somewhat upstream

I
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of the throat location, Z = 0, on downstream, it is seen that the one-

dimensional analysis is seriously in error while the series solution results

agree fairly well with the measurements. However, at the two most upstream

wall tap locations, Z = - 0.6 and Z = - 0.45, the one-dimensional results

agree more closely with the data th n do the results of the expansion solu-

tion. This lack of agreement between the series solution and the wall data

at these upstream stations can be attributed to two approximations made in

the theoretical analysis. First, since the transonic approximations embodied

in Eqs. (III-10) and (III-11) have been utilized, it is expected that the

solution will be valid only for nearly sonic conditions, i.e., M 1.

Therefore, for the relatively low Mach numbers measured at the two upstream

taps, M 0.5, it is not surprising that the series solution results do not

agree well with the data. On the supersonic side, however, it is seen that

the expansion solution agrees with the wall measurements for Mach numbers

well above 1.5. Probably more important is the assumption that the coeffi-

cients in the Maclaurin series expansion for the wall contours have the same

order of magnitude estimates as those for circular arcs. From the axial

location Z = - 0.6 downstream to the exit, the outer wall contour of the

experimental model is, in fact, a circular arc with R = 1.0. However,C

upstream from this station, the wall contour of the model consists of a

37.50 conically convergent section. Hence, it would not be expected that

wall measurements taken near the tangency point between the conical inlet

and the circular arc contour would agree well with the theory. The transi-

tion in the contour from a conical to a circular section is not allowed for

in the analysis since no provision is made for the discontinuity in the

second derivative which occurs at the tangency point.

! )
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Figure IV.12 presents a comparison between the contours of constant

Mach number obtaine from the expansion solution and those determined from

the splitter plate measurements of the half-section model for the axisym-

metric, Laval nozzle under consideration, R = 1.0. The data points were

found by first converting te stagnation supply pressure measurement and the

individual static tap pressure readings to the corresponding locai Mach num-

bers using Eq. (IV-2). Since the constant Mach number contours for the

configurations studied here are primarily radial in nature, the data points

Iwere determined by finding the axial Z-location at which tht given Mach num-

ber was attained along each of the pressure tap rows that is a constant

radial distance from the axis of symmetry. In addition to the outer wall,

jthere are seven such rows: R = 0, 0.15, 0.3, 0.45, 0.6, 0.75, and 0.9.

Hermite spline interpolation was utilized in obtaining the loci of the points

at which the Mach number values of interest occur from the masuiements of

the individual taps along each row.

As can be seen in the figure, the correspondence between the series

solution results and the experimental measurements is generally quite good

except for the M = 0.6 contour and near the wall for the M = 0.8 iso-Mach

curve. The disagreement in these regions can again be attributed to the

fact that upstream of the Z = - 0.6 location the wall contour of the experi-

I mental model is conically convergent rather than being the circular arc

J contour of the downstream region as used in the implementation of the expan-

sion solution. The experimental M = 0.6 contour is a nearly uniform, radial

[one which explains the agreement between the one-dimensional analysis and
the wall measurements of Fig. tV.ll in the upstream region. In view of the

I!
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transonic approximations that have been made, the series solution developed

in the preceding chapter would be expected to accurately predict the throat

flowfields only for regions near the sonic line. Thus, the agreement

between this analysis and the experimental data for Mach numbers up to 1.4

through such a wide region of the throat is somewhat surprising, particularly

for the small wall radius of curvature of this model.

In Fig. IV.13 the expansion solution results are compared to the splitter

plate flowfield measurements for an annular nozzle whose inner wall radius of

curvature is twice that of the outer wall. This is the configuration drawn

in Fig. IV.I0 for which the centers of curvature of both wall contours and,

therefore, the throat all lie along the Z = 0 plane so that the one-dimensional

flow direction is parallel to the axis of symmetry, 6 = 0. Since the maximum

radius of the centerbody is 0.375 units in these R-Z coordinates, the throat

half-height is reduced to d = 0.625 resulting in dimensionless radii of

curvature of R , = 3.2 and R = 1.6 for the inner and outer walls,
Co

respectively. The dimensionless distance to the inner throat wall location

is yi = 0.6. The data points have been obtained in a manner similar to that

described for the conventional axisymmetric geometry of Fig. IV.12 except

that for this and the other two annular configurations investigated, there

are five rows of pressure taps at a constant radial coordinate in addition

to the inner and outer walls: R = 7/16, 9/16, 11/16, 13/16, and 15/16. It

is seen that the theoretical results correspond very closely to the measure-

ments except, perhaps, near the tangency point between the conically conver-

gent section and the circular arc contour along the outer wall, Z = - 0.6.

Otherwise, the agreement is very good through the entire throat region from

M = 0.6 to M = 1.4.

I
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Figure IV.14 presents the comparison between the theoretical and experi-

mental results for the annular configuration in which the centerbody has been

translated downstream relative to the outer wall contour by a distance of

12.7 mm or 0.5 units in the R-Z coordinate system of the figure. For this

geometry the main flow direction is inclined at an angle of approximately

.450 (0.095 radians) away from the axis of symmetry. Also, the throat half-

height is larger than for the preceding case in which the centers of curva-

ture of both walls were on the Z = 0 plane so that the radii of curvature

and distance to the inner throat wall location in the local x-y coordinates

are all reduced: R. = 3.01, R = 1.50, and yi = 0.61. Since this is the

first example for which the location of the minimum area cross section is not

obvious, it has been plotted as the dashed line in the figure. Also shown

by the dotted line is the cross section of minimum distance between the two

contours which joins their centers of curvature. As previously mentioned, the

minimum area throat cross section for inclined nozzles is nearer the axis of

symmetry than is the cross section of minimum distance, and, as can be seen in

the figure, the two are not necessarily parallel. Even for the relatively

small inclination angle of this configuration, there is a significant distance

separating the two cross sections because of the relative proximity of the

throat to the axis of symmetry. In comparing the analytical and experimental

results in this figure, it is noted that the correspondence is quite close

except in the upstream regions near the two walls where the circular arc con-

tours of the experimental models end. Along the centerbody, the circular

inner contour meets the upstream cylindrical section at Z = - 0.2, while the

circular arc outer contour is tangent to the conical inlet at Z = - 0.6.

I
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Elsewhere in the flowfield, the agreement between the theoretical and experi-

mental iso-Mach curves from M = 0.6 to M. = 1.4 is quite good.

The final experimental geometry investigated is shown in Fig. IV.15. In

this case the centerbody was displaced upstream relative to the outer nozzle

wall by 12.7 mm or 0.5 units in the R-Z coordinate system. The one-

dimensional flow direction is inclined toward the axis of symmetry at an

angle of 5.450, and the cross sections of minimum area and minimum distance

between the contours are identical to those of the preceding configuration

as reflected through the Z = 0 plane. The radii of curvature and the dis-

tance to the inner nozzle wall also have the same values as the last example:

R.i = 3.01, R = 1.50, and y. = 0.51. For this case the theoretical and

measured Mach number contours are compared only for Mach numbers up to

M = 1.2. For higher Mach numbers, the measurements were disturbed by the

presence of a detached, oblique shock wave emanating from the inner wall

near Z = 0.2 where the supersonic flow along the centerbody is turned paral-

lel to the downstream cylindrical section. The series solution results

again agree quite well with the experimental data except in the upstream

region along the outer wall near the Z = - 0.6 tangency point.

Cross-plots comparing the experimental wall Mach numbers with those

determined from the expansion solution and from isentropic, one-dimensional

analysis could also be presented for the three annular configurations as was

done for the conventional, axisymmetric nozzle, Fig. IV.ll. However, as can

be seen by studying Figs. IV.13-IV.15, the resulting figures and conclusions

would all be similar to those for the Laval nozzle. Near the throat and

downstream of it, the series solution agrees well with the measurements of

J- - r! -
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the Mach number along the walls, while the one-dimensional results are in

error. However, in the upstream regions where the circular arc wall con-

tours of the models make transitions to either conical or cylindrical

sections, the agreement between the expansion solution and the data is

understandably not as good.

Without exception, it is noted that in regions of the flowfields

unaffected by the wall contour transitions, the shapes of the experimental

and theoretical Mach number contours are similar but the measurements lie

slightly downstream of the analytical results. This observation applies not

only to the comparisons made in this section, Figs. IV.12-IV.15, but also

to the comparisons made with existing data sets in Chapter III, Figs. III.10

and III.11.

One cause of this behavior results from the fact that the analysis is

an inviscid one while the effect of wall friction causes a shift in the

actual sonic line downstream from the corresponding inviscid one. This can

be shown by means of the following argument. For a perfect gas with constant

specific heats, one of the differential equations governing generalized one-

dimensional flow with friction and area change may be written as (90],

(l-M2) du dF dA (IV-5)_U- = VA- A- I VS

where u is the one-dimensional velocity, dF is the elemental wall shear force

opposing the flow, p is the static pressure, and A is the flow cross-sectional

area. At the sonic line the left hand side of this equation vanishes, resulting

in,

dA - dF (IV-6)
p

I
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lt use Le a positive quantity. It is therefore concludeo that the effect

uf friction is to shift the sonic line downstream into the diverging part of

the supersonic nozzle for which dA/dx 0.

A secon, reason that the experimentally determined iso-Mach curves are

generally slightly downstream from the theoretical predictions is related to

measurement errors introduced by the static holes. Since the pressure cali-

brations were performed in a no-flow test in which the transducers were

directly connected to a pressure source, the accuracy estimate made in the

previous section considered only the errors resulting from the transducers,

signal conditioninq equipment, calibration procedure and equipment, etc.

However, with flow across the holes an additional error is present since it

is well known [91-94] tnat the pressure measured by a static hole is not

necessarily identical to the static pressure in the flowfield at that point.

The pressure tap configuration used in this study is shown in Fig. IV.16.

It is very similar to the one used by Shaw [92] in his study of pressure tap

errors with the inside diameter of the tap twice that of the hole. Also, in

the present experiments the hole depth to diameter ratio, 7/d i, was nominally

equal to two. Using dimensional analysis and the results of extensive exper-

iments for incompressible turbulent flow, Shaw correlated the static pressure

errors as a function of the hole depth-to-diameter ratio and the Reynolds

number based on the hole diameter and friction velocity,

-R-= f Re + ' ZI / d b  (IV-7)
T 0h

where

I
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is tie v .,lI shear stress and . is the kineimiatic viscosity of the flid.

11rdw found that for- Aeep holes, 'd,. - 1.5, the pressure error is positive

and Js i nsepr',dert of the hole depth, . The dimensionless error, .'-pi'

inoreases from zero It Re = 0 until it reaches an asymptotic value of 2.75

at Re' s 600, above which the error is constant.

Usi 'j a somiewhat different pressure tap configuration, Livesey, et al.

193] performed a similar set of experiments and analysis of static hole

errors. Tie results were correlated in the same form as those of Shaw, but

for deep holes it was found that the positive error does not reach an

asymptotic limit out instead increases monotonically and nearly linearly for

all hole Reynolds numbers. Below Re+ = 1000 the error predicted by the

correlation of Livesey, et al. is lower than that found by Shaw. At
+

Re = 1000 the correlations intersect so that above this point the monotonic-

ally increasing error predicted by Livesey, et al. exceeds the limiting value

of Shaw.

It is important to note that the positive static pressure errors found

by both of these investigators are consistent with the trends exhibited in

Figs. 111.10, 111.11, and IV.12-IV.15. For these cases the Mach number

measured at a given point is lower than the corresponding predicted value

so that the static pressure is higher. Therefore, taking into account the

predicted static hole errors puts the data and theory in closer agreement.

By using the boundary layer analysis developed in [88] to predict the wall

shear stress, it is found that the hole Reynolds numbers for the experiments
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of this investigation ranged from Re+ = 870 at M = 0.6 Lu Re+ = 1120 at

M = 1.4. For these values, the errors predicted by Shaw and Livesey, et al.

agree quite closely so tihat Shaw's limit of 4/7 o 
= 2.75 was used. For

i = 0.6 this corresponds to a static pressure error of approximately + 0.2 ,

while for M = 1.0 and I = 1.4 the errors are calculated as + 0.5.' and + 0.9 ,

respectively. The percent root-mean-square difference between the theoreti-

cal and measured values of the static pressure for the data presented in

Figs. IV.12-'V.15 is somewhat higher than these predictions for the static

pressure error. For the axisymmetric, Laval nozzle of Fig. IV.12 the per-

centage difference is found to be (Ap/p)rn S 3.5%, while for the annular

configurations of Figs. IV.13, IV.14, and IV.15 the differences are 2.5%,

2.6%, and 3.3%, respectively. It should be remembered, however, that the

investigations of both Shaw and Livesey, et al. considered only incompress-

ible flow. Rayle [91], as reported by Chue [94], found that for transonic

speeds the static pressure error is two to three times that for incompress-

ible flow for the 0. l mm diameter static holes used in this investigation.

Thus, the static hole errors may be as large as 2-3% for these experiments.

It is felt that the major reasons for the downstream shift of the

experimental constant Mach number curves from the corresponding analytical

ones are the two just discussed: wall friction, which is not accounted for

in the theoretical model, and errors in the static pressure measurements.

Other effects such as heat transfer, condensation, particulates suspended

in the flow, etc. are thought to be negligible. It should be emphasized

that the discrepancies are small and, for the most part, the agreement

between the measurements and the theory is quite good through a surprisingly

wide region of the throat flowfields.
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Figure IV.1 Photograph of full-section, conventional
axisymmetric nozzle
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Figure IV.2 Photograph of disassembled, half-section,
conventional axisymmetric nozzle



,Wv,

FigreIV3 Potgrph f isssebldhal-scton
anuaInzl

IA



Figure IVA4 View downstream through test section of assembled,
half-section, annular nozzle
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Figure IV.5 View upstream through measurement region of assembled,
half-section, annular nozzle
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Figure IV.6 Partially assembled, annular nozzle test apparatus

Figure IV.7 View of annular nozzle through side window of
viewing chamber
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Figure IV.8 Overall view of fully assembled, annular nozzle

test apparatus
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WALL MACH NUMBER RESULTS

7 =1.4 Y1=0.0
3.0 ~ =2.0 PO=0
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e FULL NOZZLE DATA -- 1-D SOLUTION
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Figure IV.l1 Comparison of full- and half-section wall Mach number measure-
ments with one-dimensional solution and series expansion
solution for conventional axisymmetric nozzle; Re2d = 2.68 x 10

6

for full nozzle and Re2d = 3.09 x l06 for half nozzle experiments
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Figure IV.12 Comparison of constant Mach number contours from series
expansion solution with experimental data for conven-
tional axisymmetric nozzle; Re2 d = 3.04 x 106 for
experiments



1.75 I I ,

MACH NUMBER CONTOURS

=1.4 Y1=.60
1.50 -2 a32

. -0.0 Ro0=1.60

SERIES SOLUTION e EXPERIMENTAL

1.25

1.00

.75

Me 0.6 0~.8 0 . 14

.25

0.00i i i

-.75 -.50 -. 25 0.00 25 .50 .75
Z

Figure IV.13 Comparison of constant Mach number contours from series
expansion solution with experimental data for annular
nozzle with centerbody renter of curvature along Z 0
plane; Re2d = 1.96 x 10i for experiments
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Figure IV.14 Comparison of constant Mach number contours from series
expansion solution with experimental data for annular
nozzle with centerbody center of curvature along Z = 0.5plane; Re~d = 2.08 x 106 for experiments [Flagged data

point obtained by extrapolationl
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Figure IV.15 Comparison of constant Mach number contours from series
expansion solution with experimental data for annular
rozzle with centerbody center of Eurvature along
Z = - 0.5 plane; Re2d = 2.08 x 10 for experiments
[Flagged data points obtained by extrapolation]
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Figure IV.16 Half-section drawing of static hole-pressure tap

arrangement; all dimensions are in millimeters
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V. CONCLUSIONS AND RECOMMENDATIONS

i As a result of the integrated theoretical and experimental investigation

gof nozzle throat flowfields which has been reported herein, the following

conclusions may be drawn:

1(1) The approximate series expansion solution which has been developed

provides a direct means of analyzing the transonic flow in the throat region

I of a wide variety of two-dimensional nozzle configurations including axi-

symmetric, annular, and planar nozzles. For annular nozzles, the throat may

be inclined with respect to the axis of symmetry, and for both planar and

annular geometries the two bounding walls may have unequal radii of curva-

ture at the throat.

(2) Based on the series of parametric studies which was performed, it

is suggested that third order solutions be employed together with n = 2,

where n is the parameter in the expansion variable definition, Eq. (111-22).

I (3) From the parametric studies and from comparisons between the series

solution results and experimental data, it is concluded that the expansion

Isolution accurately describes the transonic flowfield through a significant
region of the throat for nozzles whose wall radius of curvature is of the

order of the throat half-height or larger. In addition, for an axisymmetric

Inozzle with the small dimensionless wall radius of curvature of R = 0.625,

it was found that the series solution is accurate from the sonic line up to

I a Mach number of approximately 1.4.

(4) An accurate, slightly supersonic starting line for initiating the

hyperbolic computations for the supersonic portion of the flowfield is the

constant Mach number contour emanating from one of the throat wall locations.

fa ti
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This initial value line is recommended because the wall boundary conditions

are exactly satisfied only at the throat. It may be more convenient,

however, to use other starting lines for compatibility with the scheme used

to analyze the supersonic flowfield.

(5) The numerical implementation of the expansion solution is

extremely fast and reliable since it simply consists of the straightforward

evaluation of a series of constants and functions. Typical problems require

less than two seconds of central processor (CPU) time on the University of

Illinois CDC Cyber 175 digital computer. This feature makes feasible para-

metric studies and iterative calculations as might be necessitated in the

nozzle design situation.

(6) For applications in which a very high degree of accuracy is

required, it may be advantageous to employ the approximate series solution

as the initial condition for one of the time-dependent numerical techniques.

This scheme may speed the convergence of the time-dependent methods to the

steady state asymptotic limit.

(7) Based on the comparison of the wall pressure measurements from the

full- and half-section models of the conventional, axisymmetric nozzle, it

is concluded thet the splitter plate technique is valid for obtaining

flnwfield pressure distributions for these high Reynolds number, accelerated

flows. The boundary layer on the splitter plate is extremely thin so that

it has little effect on the flowfield pressure measurements.

(8) For the axisymmetric, Laval nozzle and the three annular configura-

tions investigated here, the agreement between the theoretical and experimental

results for the constant Mach number contours is quite good through a

A
- - - - -
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significant region of the throat. Only near the points where the circular

arc contours of the experimental models make transitions to either the

conical inlet or cylindrical approach sections is there a noticeable dis-

I crepancy between the analysis and the measurements.

(9) The small downstream shift of the experimental iso-Mach curves

from the corresponding theoretical ones can be attributed to wall friction,

which is neglected in the theory, and to pressure measurement errors

related to the static pressure taps.

I The understanding of the topic of internal transonic flowfields is by

no means complete. To further enhance the state of knowledge in this area,

the following studies are recommended:

(1) Through the use of alternate expansion techniques it may be possi-

ble to obtain solutions which are valid for nozzles whose throat wall radius

of curvature is small compared to the throat half-height. Alternate expan-

Isions should also be investigated for the case of highly inclined, annular

nozzles, particularly for the radial flow case which has practical applications.

I (2) The possibility of extending the series solution technique to uncon-

ventional, three-dimensional, supersonic nozzles should also be investigated.

I It is felt, however, that the most likely candidates for analyzing the flow-

fields in this class of nozzles are numerical methods.

(3) In order to investigate the effect of the Reynolds number on these

f flows, experimentation over a wider range of pressures is needed. Additional

experiments are also required for nozzles having a small throat wall radius

of curvature and for highly inclined annular nozzles.

t (4) For further flowfield information, such as detailed measurements of

the velocity components, a laser doppler velocimeter system may be employed.

I
I
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The theoretical solution and experimental static pressure measurements of

the present investigation provide a basis for setting up and checking out

such a system.

(5) An area which seemingly has received very little attention is that

of converging-diverging nozzles operating in the unchoked, Taylor regime

for which the operating pressure ratio is important. An important applica-

tion of this problem is jet engine inlets for subsonic aircraft.

(6) in a related area, it appears that additional work is needed to

better understand static pressure tap errors which are incurred in compress-

ible flow measurements.
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APPENDIX A. INVESTIGATION OF EQUATIONS FOR

CIRCULAR ARC CONTOURS

Assuming that the bounding walls of the annular nozzle are circular

arcs, their equations in the x-y coordinate system may be written as

(x-a )2 + (y-b )2 = R 2 (A-i

)2 2(-)
and (x-ao  + (y-bo) z R'0 (A-2

where (ai.,bi ) and (a ,bo) are the coordinates of the centers and R and RC ¢I CO

are the radii, Fig. A.l. In the Maclaurin series expansions of these con-

tour equations,

2 3
g(x) = Y. + g'(O)x + g"(O) -x - + g,, (0 + (A3)

2 3

h(x) = y + h'(O)x + h(O) + h (0) + (A-4)
o

the coefficients can be calculated as

a. -R.2
ga(0 g"(O) =  c,jg' (0) = Ri2 2 1/2 F 1/

R -a 2R 
2 a2 3/2

3R 2 -3R +4(A-5)
g" (0 i ai giV (0) - 2 '7/2i

R" 2 215/2 2 27/2
iR.-a. Ra

and

-a 
R 2

h'(O) : 2 2o '/2 h"(O) R co

R. -_a 212R 
2-_a 2 13/2

0o 0 co 0

2 32 R 2 2+4 a 2  (A-6)

h"' (0) = COa0 hiv  (0) c CO 0o

2_(O a 2a /2 o  R 2_-a2]7/2

~ 7 AZ
A-

L

- - - - ----- -- . .. . . . ,-,.
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From the definition of the expansion parameter, Eq. (111-20), it is known
that the radii of curvature, RCi and R Care (f-1) However, as can be

seen from Eqs. (A-5) and (A-6), estimates for the x coordinates of the

centers, a. and a., must also be obtained in order to complete the order of

magnitude analysis of the Maclaurin series coefficients.

To do this, the cross-sectional flow area in the nozzle throat in x-y

coordinates is first written as

A(x) = 27T (h( x) dy 2r (x sin6+y cosS)dy , (A-7)
(x) jg(x)

where the transformations in Eqs. (111-3) and (111-4) have been used. Per-

forming the integration and using the expansions in Eqs. (A-3) and (A-4),

the first few terms in the expression for the area are

A(x) = cos 3 2_ 21 1 )+cs8y'0-
21T 2 o 2y2 + [sin3(Yo-Y, )  +  c0sB(Yoh'(O)-y g'(O))x

(A-8)

+ [sin6(h'(O)-g'(0)) + cos yh"(O)-y ig(O) + h,(0)2_g,(0)2 x2

+2

Since by definition the area is minimum at the throat plane, x = 0, dA/dx

must vanish there. This leads to the relation

tan = yig'(0) - yoh'(O) , cos$ 0t  (A-9)

since yo-y = 1. Defining an average, symmetric throat slope, j'(O), and an

average y location in the nozzle throat, y, by

2yj'(0) -- y g ' (0) yoh'(0) , (A-iO)

tThe radial flow case, $ 7r/2, was previously ruled out, Eq. (111-28).

!
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Eq. (A-9) yields the following relation for j'(0),

J ,(0) = I tan ( ).i ( ) 2 y

I In view of the previous restriction placed on tan/y, Eq. (111-30), the

throat slope quantities, j'(O), g'(O), and h'(0), may be estimated as

3 3/2). Combining this information with the expressions for g'(O) and

h'(0) from Eqs. (A-5) and (A-6) and the fact that the radii R , and R are

... -) results in the conclusion that the x coordinates of the centers of

curvature, a, and a., are (E /2) under the present assumptions. The order

of magnitude estimates for the Maclaurin series coefficients for circular

arc boundaries can then be completed as,

g'(0), h'(O) (c3/2) g"(0), h"(0) = ()

g.' (0), h"' (0) o(c7/2) giV (0), h'v  (0) = 7(c) (A-12)

Although the details of the boundary condition evaluations have been

I presented here only for circular contours, the results are also valid for

other contours whose Maclaurin series coefficients have similar orders of

magnitude. Thus, the solutions developed in Chapter III are expected to

I apply to other conic section contours such as parabolic, hyperbolic, and

elliptic arcs. It should also be noted that the boundary conditions at

I straight walls are identically satisfied since the wall slope is exactly

matched and all higher derivatives vanish for this case.

I
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APPENDIX B. SOLUTION SUMMARY

Referring to Fig. 111.1, the only quantities which need to be specified

in order to initiate the solution are: -y, the ratio of specific heats; ,

the parameter in the expansion variable, Eq. (111-22); N, the number of

terms of the series to be included; and the equations for the inner and

outer wall contours, G(R,Z)=O and H(R,Z)=O. With the geometrical configura-

tion given, the following quantities may be determined: the minimum area

cross-section, i.e., the throat wall points (Zi ,Ri ) and (ZRo); d, the

throat half-height; Z*, the Z-location of the x-y origin; and u,, the angle

of inclination of the x-axis with respect to the symmetry axis. Utilizing

the coordinate transformations listed in Eqs. (111-3) and (111-4), the

parameters y,, y., g'(O), h'(O), g"(O), and h"(0) in the x-y coordinate

system can be evaluated; y = g(x) and y = h(x) are the transformed equations

of the boundaries.

In order to carry out the initialization of the solution as well as

its further evaluation, a library of FORTRAN routines has been developed

and used. The throat plane is located numerically using a pivoting scheme

whereby the location of the inner or outer wall point is alternately fixed

and a sweep is made across the opposite contour until the minimum area sec-

tion for the given fixed point is found. This process is continued until

the fractional change in area between iterations is less than a prespecified

convergence value, e.g., 10- 1. This method has been thoroughly checked by

substituting results obtained with it into the Lagrange multiplier formula-

tion of the problem of minimizing the flow cross-sectional area in an
Y

I
r

S--.-.--- - r - rI- --. - -
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annular nozzle with circular arc walls. Since the resulting equations have

been found to be satisfied to a high degree of numerical accuracy, e.g.,

residuals on the order of 10- or smaller, it is concluded that this method

can be used to locate accurately and reliably the throat plane. The contour

derivatives g'(), h'(O), g"(0), and h"(0) are also evaluated numerically

using second order accurate, centered differences and a nodal spacing of

Ax = 10- . The truncation error is therefore on the order of 10-6 which is

sufficiently accurate for the present purposes.

Once the quantities mentioned above have been found, all of the flow-

field properties of interest can be determined by the straightforward

evaluation of a series of constants and functions. Given the point (Z,R)

at which the information is desired, transformation Eqs. (111-3) and (111-4)

are first employed to find the corresponding (x,y) coordinates and the fol-

lowing parameters are then evaluated,

h" (0-" (0 (B-1)2+n[h"(O)-g" (0)

z= (-Y+ /2 x (B-2)
t -2 -8-5

g9 :Y~ 1/ C/2 g'(0) (B-3)

hI : E /2h' (0) (B-4)

2"() (B-5)
g2 :Vh (0)-g" (0)

h 2h"(0)(B6

2 h"(O)-g"() (B-6)

The transonic perturbation velocity components (u1 v1 ), (u 2 ,v 2 ), and

(u3 ,v3 ) are then found as follows.

I I
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First Order Solution

The u, and vi velocity components from the first order solution are

given by,

ul(z,y) = A1 (y) + BO + Biz (B-7)

v1 (z,y) = Ao(y) + A,(y)z , (B-8)

where the tonstants are determined in the following order,
1 ~ ~ _(h2Y _gY.y

82 -A~ -g2y. y. (B-9)
2 2 2

Yo -yi

B hy °-B 2 1/2

B h 20 2 (B-lO)
l Y .

64= B3yo + B BYZnyo "2 Byo -(B-1)

441 o 12 0 2 12 (

B5 Bsy 3 + B B y. Zny. B By (B12
5 = B1*i 1 2 i 2 1.2Yi I (B-12)

B3 = - 1y i -glYo- B4yi -B5 YoYi 22 (B-13)

B = hy-B 4 y -B3 (B-14)
0 2

I Yo

B6 BB- - B B (B-15)

0 1 2 1 2

and the functions of y are determined as,

B
A (y) = By + (B-16)

1 22
AI (y) = By + B2 lny (B-17)
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1 B3

A'(y) By' + B B2Y !,-y - Y B1 B2Y - + BoBIY + - (B-18)

The discharge coefficient constant CDI is found as,

C 1B B 2 1 B 2B (B-19)D4 0 1 1 2

12 1B2 1
CD = B 2 +-B - BoB (B-20)

D5 2 0 422 0 2

C D BB B2 (B-21)
D6 02 2 26_ 614 1I2 [ 2 Z 2 2 2]

C 4 (6-Y 4 + Yi + CDY 0 Yi + .1 B 2 [y onyo _y Iny ]CDI 24 1 Yo CD Y. CD5 2

+ B B2 yoZ, y-y, my} C coo -y, lZ"2yij (B-22)

Second Order Solution

The u2 and v2 velocity components from the second order solution are

given by

u2 (z,y) = [Cl (y) + DO] + [2C2(y) + D1Iz + D2z
2  (B-23)

v2 (z,y) = Co(y) + Cl (y)z + C2(y)z 2  (B-24)

where the constants are determinea in the order,

- 1 I B22y+ B B (B-25)Y 2 0o 2 ny+ 0

D4 = h1 D3  (B-26)

D5 = h2 n + h2 D3 + h1B1 (B-27)

D6 = h28B (B-28)

D B21y2 + B Zny + B (B-29)
7 1 1~ 82  1  0~

D= gID 7  (B-30)

,r. , ,-or--_
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D9 :g2n + glBI + 920D7 (8-31)

1 010 g281 (B- 32)

( y. (010Y-D6y1 YY(

2 2 B-33)

YO -Yi

D 2 = 6 21 . (B-34)

3BI Y

012 2-I: +3B 0 (B-35)

D0 48 4D2 + 2B 2B D + (2y+l )B4 (B-36)
~13 41D12 1 2 (B36

014 =88BI1 + 48202 + (4y-2)B B2  (B-37)
2

D =4B2B + 4BD + (4y-2)BoB2 (B-38)
15 1 2 002 (y2) 0 1

n0 y3 +( 1- 13 Yy

17 4 130o 215 4 14yo +21 4ofy

+ 2B -- B (B-39)

018 4 1 3y + 21 ~0~~ ~ iny.
I ~~ Dys + 2- DIY 1 5 4-S 

01-D41Yi + 7 
D I 4 y i y

+2B2 -- 8B (B-40)
2 y,1

I
0 Dgy 0-D A -D, 8yo+01 yA yiy (841

16 2_ 2

DI D D 5 yo'Dl 7 y0 -D,6  (-2

I

"I 2B 
--

O



138

0 D _ D + 2B D (B-43)

9 2is 4 14 1 1(

0 2 1 D (B-44)

D21 D82 !B0 + jC)65 (B-45)
21 12 8 113 j4 1

+ B2 + 2B2 B + B (8-46)
022 =280012 1BO + (20-)BoB1 + 2B1 0  1 + 6 2 1 2

0 q B2 (B-47)

D24 =-231 B2 - IBo (B-48)

025 4B2D1 + (2y+1)BB 2  (B-49)

D =2BD + 282D +2 12 2 D (2y+)B3B(

2

D = 4BD + 2B2D + (4y-2)BoBIB 2 + 2BID + 2BIB 2  (B-51)
27 0 11 2 10 21 16 1 2

O 2 oD + (2y-I)B2B1 + 2B 2B + 2B B (B-52)
28 0 1 81813 +2B (852

30 ~ 2 1y - 14 22-16 2 63Y- 3D23 y-V + 25- 4 27 2 28 1Y

1 3

Znyo

+ 288 - + D(04 + 8I2 (B-53)

Y.

D Y +I I2 3 + 24 D 2 +j 1D+j

31 6 21 i +T ~'22- 16 26~ + 1 3 23yi (l4 25 4 7 21

+3 - 1 0~ tnj 2 - + 3 25427 + n 1 ~

2 2 5 YI ( 1  4 2 6 ln ( 27- 2 5 ]Yi i 1  281

+ 2B8 2 __3_n + (0 2 +6 8) (B-54)

yi

A&I
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8 Y, -D4yi - 31 yo +D 0 YiY

D 29 y 2 2 (B-55)

0 i-Y

I D ID y-Do "

D302 29 (B-56)
Bly

DI 1 1 (B-57)
32 4 22 16 26

D o -o D 1 +10D + B0 (B-58)433 425 4 27 2 28 1 0

I D = D2 - Ds (B-59)

034 2 27 2 25 (-9

35 = 24 + 1 B2 (B-60)

The functions of y are given by,

C2(y) =D 2 Y + (B-61)Y
I 2

C(= D 2 + 01 1 Zny (B-62)C2(Y) = 12y +D1

C' D 3y + D19y + "y + D14yzy + 2B y -Ln B (B-63)

1l 14 n 2 2 2 1IC1 (y) = L D y4 B2 + B(lny)2 + 0 2 my1 16 13 D20Y 1 Bly + B214
-+0 4

yZny

+ D16 Zny (B-64)

Co( 1) 5 . , + D 3 +1D 2 +29 1 2
6 + 2 3 y + D3 3 y + + 2 025Y(Zny)

+q -D26 3 y + D Iyny B Z1 ~ny + 2B B 2Zny 26 34 23y 35* (B-65)

The discharge coefficient constant CD2 is found from,

CDIO 4 6  B4 B (B-66)

II
I
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c = -1--- B 2  B B B + B2B2 B-67
DI1 16 1 3 8 -'6 16 1 2 b b4 1 2 B-7

1 1
CDI 2  = I 1 BB2 I1B6 B-68)

1 1 2 1
CD3 = BB + _ - 1 BBB (B-69

D32 3 6 4 1 4 12 3

1 1 2 2
CDI -B BB -- B B 2(B-70)DI 4 1 26 16 2

CDV 2 ~B(8 8} f661 1 ~3( G~) 4 4)v'c 256 B, Yo-Y + C D 0Olyo-yi j- - 1B lY-Y.} , YoY

+ CDl 2 Yo-Yi + CD Y-Y - £IgBY-Yi + 8 IYB2 LYo

D7 }2_ B B2Yo :Y6, Y + CD 4 YYoYi:Y

3 11B B2Yo:':o-i Zz~ .+ -1 g B2 B3 Y 7z"Y-Y. ; Y.

l B :nlyBy.l (B-72)

1 2 1_ 2 1C +l C-B B-B BD B 0Y 1

6DI 1 6" 20 48 0B 13 144 1D14 28 B2D13(B7

12 1 1 22 1 1 2
CDl 6 : 4 B 1D + -BDBo +-BB + 24 - LB- 4D,

4 1 0 2 02 32 1 2 64 2 D416 1 16

-lB LBD (B-73)
-8 B2D20 32 0D14

Col7 (3BIB -3-B oB (B-74)

9~ 1Zy 1 22

31 1 2 123

B 2 Z +- B O (B-71)

CD19 - 1 B2B2 + -B 0D(-76
S2 8 22

CD.O =B + D - BB (B-77)

CD 5  6 2 6 0 1 14 2 2 3

CB2  1 L2 -BD (B-78)

247 1 14 2 13
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1 2  11 B2-2 1

CD 2 2  B I- D1 6 
+  - 2B2D20 +1 Bo D1 4 - B2 1B - B2 U1 (B-79)

33 2

CD2 3 =B _- B - BoB 2 + B2D + BoD (B-80)
23 2 2 16 0 2 2 0 0 16 (-O

2 6_ 6 5 5),1 4 4
C B D 8) + CDY Y - 5 By - + C y

I +c :_,Y3 + C~SY~j+ o(y,:,oi-,,2:g 1~

D2 1 Yo +Y 5 CD22 Yo y D16-Yi Y'

I 3 2_ 2 3 [ 2 2 7zy 37 B-1

- -3 BLB 2(Yo nY-Yi ZnYI + CB2 Y Yo Y Y Yi

BD24 8 0 1 B - 3 Zn B+ (B-82)

CD2S 8 BoB 6 4 1,, 2 16 B 0 2 (B-83)

D24 402 4 12 8- B2 (B-84)

c 27  2 B2 - B 2  (B-85)

3 2 + 2

D28 4 0 1 2 16 (B-86)

CD2 9 B- 32 (B-87)

CD9 [64 B Yoi + CD24 0Yo + CD25 YYi + CD26 YoYi

3 [4Yo/ 2 1 (B-88)

+ CD2 Yo 4Yo YinY + C 29 o o- 2Ny (B-88)

DD
:,

_____
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CD2 = CD7 + CD8 + CD9  (B-89)

Third Order Solution

The u3 and v3 velocity components from the third order solution are

given by,

2, 3

U (Z'y) = [EI(y)+Foj + [2E2 (y)+F1 jz + 3E (y)+F Z2 + Fz (B-90)

v 3 (z,y) = E'(y) + E'(y)z + E'(y)z2 + E3 (y)z 3 
, (B-91)

where the constants are determined in the following order,

F h [ D y 4 + D y2 _ 61By + B 2 Iry} 2 + D 2Ll613Yo 2 D(Y jIIo+BI;~)4o ~

+ Dl6 ny ° + D] (B-92)

F5  h h 2 + hn B 2 Y2 + B2Zny + B + h[' DI4 + D0 2

2 h2 2~- 1 2 1y 4  2yo

- 81 BIy + B 2l(ny.)2 ~D 14y.Inyo I D 16 7yO + Do]1

h[y + 20 my + - h B

+ B6 + BIB 2 ny + BB 2  Yo] (B-93)

YYo
F6  h hn8 + h D2 + h2 12

2 + 2D 1lny, + -, h~i h1 [B2 B21

-~ ~ B (Y} 2By + + B B Zny + B12 21B (B-94)

F - h[B - 2 (B-95)

A
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F - 2 y +D-BD y

+ D :y + D
16 i 0I

F9  =y 2 B2 1 2 B2  y + B + g 2D Y, +
2 +221 y 2 l 2

2 l 4 2 2 +2 + D Y

+ g2 3 Yi + D Y2 0  Y- 1 y + B2 Y 2 + 1 Y,

-~~-. ~ ~ 1 3 1 3  42 4

+ D16  :y + D I B y + B + B
o1 6 2 4 1 i 6 1 2 'A

L

837
+B B2  23 (B-97)

i

F 2 2nBIDg + - D -: + 1 210 2 12 12- I+ y + 1 1 2i

10 2 2
I I 4 2 g2 1 y B 12 -y (B-98)

4 I YI

F = 2(-y-l)B D + D +4 (B-100)121 12 1 2 '1 2 12

F1y-F A y. y. (B-101)

F F -F
34yo-2 12yo 13 (B-102)

F1 4 2-1 2 4B F (B-103)

I
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3B 2 + (y+2)B 3  + 9B F + 6D2D2 + 1 + (2-,)B5F1s 5 1B 3  1 ( 2 D2  1F4 2 121 21

+ (-y-I)BID 13 (B-104)

F = f+ B2 - D2 (B-105)

F B B2 + 6B2D (-106)

1F = (Y+1 61B (B-107)

F19 = 6B2 F + 2(y+2 )B 202 + 18BF1 + 12D2D1 + 2(2y+I)B2 DI

+ 2(y-1)B2 D12 + (y-1)BiD14 + 3(y-1)B3B (B-108)

F20 3 2 + 682011 + 6B21 + 2(y--)B0-5- + 2(y-l)BD9

+ BDB1  + 2(y-l)B6 02 + (y-)Bo B + (y-l)B B2 D

+ (2y+l)B2D1 + 2(y-1)BoB + 6BoF 3 + 6DD + 6BB12 (B-109)

1 3 Zny° F18  1 l

F F15Y + F + F - - + F Y -
F22 1 5- F16 F17 Yo y2o 91 7

0

+ F20Y °  (B-110)

2 F 3i + +F y F1 , 8
23 15 A 16 17 2 '9L y, Iny 4y,

F23 4 l a i Yj

+ 1 F20 y (B-111)

21 A 2Y-F23 Yo+F 22Y1 lYi Y. (B-112)

y 0 -Y

oh

I

I
=/ - " .,, ;_ --.. .... .. . ...... .... .... . .. ...
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F6Yo-F2 -F2Y

2 3B 2 (B-1 13)
1 yo

F = F2  - F + 3B F (B-114)
24 2 4 19 12

F2 2 24 8 1 9 (B-195

F 3B 2F + -B F + 20 2+ 0 0 D + 51+4)B2 D + (+2)B 026 14 2 1 15 12 42 13 11 1

2 B4 D 21')B6 + (y-I)B D2  (B-116)1~~~ ~ 2B°2j 12

F -2B 2 F + (y+I)B 3D +2BB2D + 6BF + 8B F + 4D 0 + 4BoB D
27 1 2 1 1 0 12 0 14 1 25 1 12 0 112

+ 40 0 + (2y)B D2  + (2"y)BB 6 + 3-±Z7)B4B 2 + (y+3)B 2 9

+ B D + (2-y)B B + 2(y+1)B0D +B 3D + 1 (,_I)B2 (B-117)+ B1D3 0BB 1 2(+)612 1 1 4114

+ (y-l)Bo Dl + 4(y-l)B 0 + - (y-I)B D26 + (y-I)B B2 D12

F8  8B F1  - -0 (19Y 43)B - 5 D + (y-I)B 0 (B-118)28_ 1 8 16F 1 1 2 8 - 1 BD 1D2123

F29 = 8BF1 F - 2(y+2) 1 BIB.2 - 4B D + (y-1)BBoB + (y-l)BDs3 5 - 1D

+ I (y-+e ), B6  (B-119)

22

F0 = (3y-I)BB B + 4B D + (2y)BoB2 + 4B3D (B-120)3012 3 2 16 0 2 +480

F31 = [Y+a,}BB (B-121)

F = 128 F + 4B F +802 68+2
2B2 13 1 17 F 118 + 6B202 + (5y-3)B 2B 2+ 4(y+ )BBD,
+ (y-I)B2D14 + (y-I)BID 2 (B-122)

' Iu



146

2 !2-1+31 B2

F 6B2 F + 6B F + 2B F + 8D +0 DD + --- BD
133 1F3 214 119 1112 214 2 114

" 2k-+1)B30 + 2(,+3)B B2  + 2B B D + (4-,)B4B 2

+ ('-I)B2 D13 + (y-1 )BID 26 (B-123)

F 34 4B 2F 2+ 2( )BIB 2I + 4BB 22 + 12BF + 8Bl F + 8DID1F34 =42F2 1 +)I2D1 0Bo2D2 0 13F~ 12

S8BoB1 D 2 16 + B ) 2 14

" 2(-y+l)BB 2 Dl + 2(y-I)B 2 D19 + (y-1)BoD14 + (y-1)BI 025 (B-124)

2

+ 2(--I)B D34 + 4 (-y-l)B 6 D + 4 (-y-l)B B2B + 2(y-I)B B B1 46 110 1B2  12 6

F35  = 1 - (B-125)

F36 = 2(y+4)B' (B-126)

2 (y)B B2+ (+Bo2

F = (y+l)B 3 B3 + (y+l)B B2B + 4B2 016 + 4B2 D , + y+B2 BB2

+ 4B D + 4B6D + 2(y-1)BOD19 + 1 (Y-l)BoD + 2 (y-l)B D
3 12 6 101 7 0 14 1 33

+ (y-I)BID 34 + 2(y-l)B 6D + 2(y-l)BoBI B6 + (y-I)Bi B 2D (B-127)

+ (2y)B2D o + (y-1)B B + 4BoF + 2D + 4D D + 4BoB D  + 28D1001 0 2 1 0 2 0 11 0 2

F5 1 3 1 2 +Zyo F31
39 6 26~' + 2 7y +F 2 8y 29 3-

0 
Y

F3 [yo(Iny2 y. Z-nyo + T'y]+ F33[y. nyo - T-y]

Y

+ - y (B-128)
2 37o

I
----- __ ___ ___ ___ _. .._ _ ____
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1 _ 1 3 2 31Y F
F40  6 F26yi + F27Y + F28Y. + F2 9  F30 Y - Yi

ZF y o -Y+ yY + F 3 'T ] T Y o

+-y F~ + Z y J + F 4 y 2y

34[2y.>lyi - i 15 1 1j 36 y

+I 4-F 7 y (B-129)

F3  ~F 9y -F A. -F40y0 +F 39yi ~~ (B-130)
38 y 2 2

Yo "-Yi

F F5 y -F 3 9 Y. -F38
F 2 (B-131)2B, Y.

F41  4 27 16 3(B-132)

F 1 F - F3 + 1+F + 2B F (B-133)

42 4 32 4 237 1 1

F43 =-F - F (B-134)43 2 34 2 32

F4 4 =F 2 9 - F35  (B-135)

F4 5  4 41 - 4 F3 (B-136)1 1

F46 =- F4 2 +-F - F (B-137)

F 47 =F 4 4 - F35  (8-138)

F48 2 F43 4 F3 2 (B-139)

I

r
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F4 9  8B 1 15 126 12D1-BF +1 + I D + 1-+21j3D3

+ 5y3B7 + i BI2D21 (B-140)

2 1 11

F B 2F + BF +2BF + 0D D + - DD + -BoBOD
50 1 25 4015 1 45 12 20 8 113 8 0 113

2 1 4 3 (y+1 4 B2+ BoBD +- BzD + (y)BDo + - BBB + (2"y ID0 1 12 4 1 1 20 BJ 6 132

+ B 2  + (y1JoB D2+ B5 +}OB D+IS+ D13

32 2 19 + 1 8 JB6D13

+ (-J4 B 2 D + (y-1)B, 0 + Y71 B B D (B-141)8 126 021 16j 1 2 13

F1 282 F + -B F - 28 B D -2 Bti8  + B 1 Al9 8 205 1116 9 128 1 112 23j~

9
- - 13 (B-142)

F2 : B 2F + BoB0D + (y)B3D o + 4BoF 2 s + 2B F46 + 2D12 o+ 2

+ 2DD + 288D + 11 B4B + frBIB 2 + (y+1)B 2 D
1 20 0 1 20 4 1 1 3 ~2j 6 1 33

+ 2822 + B2B 2 B6 
+ (y+l)B oBB 6 + BB B 2 + B1 3D

+2B0 + BD + 6 (2-i 0

6 19 2 3 13 2 1 4 (y-)BD 3 2 + 26

+ 2(y-l)B D2 o + (y-l)B B2 D2D + Y-1 B2B3 (B-143)

2 2F 5 2BF 18 + 4BoF16 + 2BF47 - 2BA + (y-5)BBoB1 - (3y-I)BBB6

53 1 1 1 1011

+ (It3'BD.s + - 2 B2D B B2 a D + (-y-)B D
~2 15 3 2 231 12 - 1 19 0 23

- 61D20 (B-144)

F5 4  4BoFS + 2BF 31 - (y+I) 1BB 3 + 220D - (y+I)a IBoB 2 - 28D16

+ (y-1)BoD3 s - 81D + (y-l)B2 (B-145)

0 35 1 0 1 ff--
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F B2__ + 2B20 + (2-y)BoB 2 B3 + 2B D,6  (B-146)
55 1 3 2 29 3

2B F + BF + 6B2D + (3-y-1BB 3+ (-l)B (B-147)
56 2 17 B1F36 2 1B2 2D25

F B F + BF F 2 B + 3B2D + D D + 2B 2 B D
57 1 17 2 19 2 1 32 2 12 11 14 1 2 1

(3y)B3B2 + (]Y-2 B, B2D + -I -B 2D + (-y-)B2D26 (B-148)
1 (3 2 2 14. 2 1B1D25 2 2

F 4B F +2BF + B F + 4D + 382D + (2y)BoB B2
58 2 21 0 0 1 121 6

+ 4BBD + (2y)BIB 2 b + (y)B D + B B2 + 2(-y-I)B D0 2 11 1 62 25 2 1 2 2 34

+ (y-I)B D25 + 3(y-l)B 2B (B-149)
0 22 6

F =-BB2 (B-150)
59 1 2

1 BDBD + + 2ID
60 2 119 4 215 8 133 2 12 14 121 122

+ -B4 + (Y''803 + 8804 BB + [2y--iBB
2 1 11 ~4 114 i8 1 213 2

1  2

+ Bl 26 + (y-I)B 2 D21  (B-151)

21F61  2B1 F2 1 + 4B2  + BoF 9 + 2BI F48 + 2D12D 1 + 4D 20 + DID14
F 1 =2F2 F2 3 I~

+ 1 BoB D + 2B8D + 2BBD + BB D + (,)B3D2 0 1 14 0 1 11 0 2 12 1 201 1 () 1 16

+ (2y)B B DB + (2y)B 2 B6 + (y+1)B2D34 + B2D

r2y432  B ( !9 B (+BB + B 0

S 1 2 + (2y)B 2 + 614 + 2 + 1 25

+ 4(y-I)B 2D32 + (y-1)BoO26 + ( B 2D14 (B-152)

F62 =4 2F16 +2 1F3 5 -4 1B1D1 1  1 (5~ 1 B 2  4 1- 14D

+ (y-l)B2D 2 (B-153)

1 II:k
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F+ 2BoB2D + (2y)BB 2D0 + 4Bo F + 28 F + 4Do D

+ 2B 2 2 + 2D0 + 2BoB D + (-y+5) 2 828 + (,y+l)B D
0 1 1 6 0 1016 1232322 ++ +2?IB

6B2B + (Y+l)BoB 2 + (y+l)B B D 6 + 831 + 2(y- )B 0
2 6 0121 2 1 3142 33

"(Y-l)BoD + 2(y-I)BoD34 + 2(y-I)B6 D 16+ (Y-1)B2BB

+ 2 (y-)BOB 2B6  (B-154)

22
F6 4B2F8 - (y+7)6B' + (y-I)B D0 + (-I) BoB 2  - D1 (B-155)

F65 = 2(y+4 )BB2 3 (B-156)
65 2 ]I 2BD3

F66 (y- I)B B 6 + 1±5J221 +2B8202 + 2B2033 + (y)BIB 2 B

2

+2BB2B + 2B8 + 2BD + 2BD + 2(y-1)BoD
0 1 3 0 2 6 6 16 3 19 0 33

+ (y-l)Bo D3 + 2 (y-l)B6D + (y-1)B'oB6 + (y-1)BB 20D

+ (x B 2 B B2 + 2B F + 2DD + B D + 2BB D (B-157)
2 012 01 0 1 0 1 0 10

F68 - F - F (B-158)
6 0 - 36 60

69 =LF 2  F IF (B-159)4 9 F5 32 57 16 F61

F7o ="F 3  F (B-160)3 9 62

F 1 F - F -F + ' F (B-161)
71 4 58 8 56 4 63 2 66

F 1- F 3 F (B-162)
72 2 58 4 56

F - F F (B-163)4 61 8 57

Am__I
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F F +- (B-164)
74 4 56 - 58 2 F63

F 7 5  =F6 4  -2F59 B-165)

F7 6  =F 5 4  + 2F59 -F 6 4  
(8-166)

F - 7 +F 5 +1 F y4 +F 3 +F 2+FF7 7  8- F4 9 Y + F6 8 Y ° + -FsY + F6 9 y + 70yo + F 1y .

1 3 3 + F?2Y yo + F

2 3 2

1 + F 1B -1 6 7)1 265 Y. 6 - 6 0y~n 7 3 yn 0 ~ 6 2 y~~

F74Yo IYo + F75 nYo + F55 yO 76 (B-167)

-'1F; 5 1 4 F2

F7 8 49Yi + F6 ay. + - Fs1Y i + F69y + F7 oY + F71y.
78Y 49yi + F 6Y 70Y i  71nYi +Fs mi

+-FsYi1yi F 3  2 F i2 )2

I + I , + 72i n + F (5 B-62

+ 1F4Y z y  + F y5Zny + F Y 3 +F 1
IIy

F y I y ,-F Y + F 7Y +FTYi + F y---- - 7 (B- 168)

6?j

IF4y.-y F y +FIF ( yF 4y.F 8  0 77 !y i 1Yo (B-169)
67 2 2

F F 4 77 67 (B-170)
B IYo

F 79 F7 1  + BF 0  
(B-171)

II

'i-
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The functions of y are given by,

E"(y) = F y + I (B-172)

14 2

E (y) =  F 4 y + F137vy (B-173)

F F! 14 1

1'(y) = FF, + F1 + F (B-174)
254 +'24+ y 2 9yiY + y + 6

E2 (y) 1 F 2 + 1 2
)=T- F15y + F + F1 y + 'a+ F(Zny F :y

+ F2 1 Zny (B-175)

r'~ 1 5~ 3+ 1 F 2 + +F F 31 2

S 2 6 y + F41Y + -F28 + F4 2Y + F3 y(Zny)

2 36 y 33 + F4 3y~ny 4 F35 ny

+F Iny + (B-176)
0 y F44

1 6 4 1 3 2 F31 1 3
E,(y) T6 F26Y + F45y + F 2 8y + F46y + F47y + + 6- F36(Iny

230 +46 + F47 + y8

+1Fy2 Uy2+ ,(Zny )2 + I1 4 In +F 2 .

+ F35 yZny + F38 Zny (B-177)

E,(y) 5+1 4 + F6 7

4 F 9Y + F68Y F51y F6 9y+ F 0Y+ F79Y +--

+ i F y(In) sll2+F Zy +' F5 (y2
2+ F57y (ny) F7 2 y(Zny) + F(n

FF 6 2y lny

2+ B- 6 - )y

+ F,4yZny + F175 ny + F55  y + F76  (B-17)

!
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The third order discharge coefficient constant C D3 is determined from,
CI36  B 1+ 8 (B-179)

1 3 1

C D36 -4 BID 32 +  B 6D 21(B19

C B03 D 021 (B-180)

CI1 B3 +BD +1BD (B-181)

D38 1 33 6 32 6 3 21

1 B3 1C B 3 D +- B D -+ BD (B-182)
D 4 1 35 36 23 1 32

CD42 = B6D29 + B3033 - --D35 (B-185)

CD43 = B3D23 - 33D29 (B-186)
13

CD4 4 =80 +- B B D (B-187)

64 35 3 35 23 1 332

CD4 5 2  B2 +8 $2 3 4  (B-188)

CD4 6 =8 1 - (8-186)

C4 2B B BD2 + 1- B D2 (B-190)1 3 1

CD4  8 8D + -B6D + B BD0 (B-192)

D49 1 25 4 26 2 2 3
1

CO BB2D -+ 8 B 3 B D  (B-193)

D50 3 223 12 1 2

CD 6  B3B B + B D + B B D + D (B-194)
1 2 6 34 2 2 33

I
13

CD 9 =B -D +8 812
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C D52 = B 2 B6 + BIB2 D35 1D34 (8-195)

CD5 3 =2B2 B3  +8 8 + 3 34 + 2 B2 (B-196)

c = c LB-97
D54 8 D36 - 64 D48 (B-197)

c I c + I-D55 =6 D38 108 D44 - 3- CD4 9  (B-198)

D56 5 D9 - 2 D50 (B-199)

C05  1 B B 0 +~ 1 (8-00D57 4 4CD40 256 1 2 25 2 CD4 5  16 D51 (B-200)

c = c + IC (C-2D58 3 D41 27 D46 9D52 (B-201)

1 1 159  42. D2 4 - 4 D53 (B-202)

CD60 =CD43 + 3B2B3 
(B-203)

D61 4 1D45 - 1-2 25 (B-204)

1 I3

062 6 D49 18 D44 (B-205)

64 1 2 25 8 D45 4CD5 (B-206)

CI64 = 3 CD52 - D46 (B-207)
-- I 2 I

CD6 5 =- 7 5 3 - 2 CD4 7  (8-208)

D3 0  4 D 2 1 (Y ' yl + 0 CD54 + 7- 057 0Yoy

D56 (oD57 Y + 8( I D59(.-Y5 + C (4_41 + C+ C +_ 2

C60(Yo Y ) + -1 B, B2D25 [Y. (ZnyJ) _ Y(ny, )3]
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6 D4 4 Y Y -. Y} + CD6 I Y -(7Y , +y

oF 3o 3 ,Y 3 y ]2 Y ,y 1-

CDS Z o'Y i + 21 CYD-Y 7T~ r C6 o :Yi
2 

2L

cD, - B - j 2J , -2 2

3n, + L Y Y °  Y + 6 6(. 2
D4 Lo 08 FY

+ B 2 ~ r ( ~ ! Y ) -L 02 0 8 C V 7 Y Y + D 6 2  I y - > y

D 0  _8 4 4 3-30ooV3 i +~ C64 3 [o 'y K Y

2 2

D6 = nBo B Y 6  1 B o  2 B3[o7Zo y

3 29 :K(Y/y. ) (B-209)

cD6 6  4 16 20 B IB (B-210)

B I B22 3CD6 7~ B1 83 2- 186 + - Bo ' B6 (82)

- 2 o B2  (B-212)

C 8 2 B + ± 2 B2 + I 3B + Bo 2
D69 1 2 Y 2 06 (8-213)

CDvo =-B 2 8 + B (B-214)D 1 1 3 1 '0 '6(B24

I= 2808(, + a 2B +-1B 2B2
17 03 0 2 13(B25

c~~~~(- 15)B 8B2
CD7 2 216 0 1 2 (B-216)

CD, 3 B 3B8 + B 4B

73 A 2B 0 1 2 (B-217)
C 38 B B3 +8 B 2881374 27 1 2 6 2 8 08 1 '2 B6(B28

C D7 5  - 2 1 B 2 6 - 281BO 8 1 (B-219)

C, 2B B B6 + 28B +28 88 (820D76 3 6 1 2 0 1 2 3 820

. 5 6

7 C 66 -24 (-221)
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4 1 (B-222)
CD7 8 6 CD 6 7 +- B - - CD B22

D78 6 D 7 108 1 2 36 D73

=- +__-3 BB2 (B-223)
CD79 5 D68 50 1 1 2

1 3 2 B+1
D80 4 D69 128 1 2 32 D72 16 D74 (B-224)

c 1 C 3BB2 1 C (B-225)
D81 3 D70 27 1 1 2 -9 D75

c - c + 1- B BB c- (B-226)D82 2 D71 2 1 2 3 4 076

CD 8 3 =2IBB - 21B o B3  (B-227)1 2 3 B2 3

D84 4 D72 -16 12 (B-228)
c -1c B 4 B2

CD8 5  6 6" CD7 3 - B (B-229)

C86  -B B -c + c (B-230)D86 32 8 D72 4 D74

4 2 +1
CD87 9 BB + (B-231)

9 1 1 2 3 275

CD8 8 = CD7 6 -B1B2 B 3  (B-232)

1 2 = y CD77 (. 2(Y I B+ (8 81 L1 B(7_7j
Do,1 I2j B:I:°-:° + C,,_: - o, ,-:

+ C 78 (Y ii + CD79  + i D0 [4yi~ + CD81(.yi~~

D82 0y yi + CD8 3 (yo-yi ) + ;f- BIB~ [ y: (Znyo) 3 - yi (Zny, )3]

1 Y Zy 62 P(nyi )2] +C 8 y(lnyo) _Y4 lnyi )2

2 2 B[ 3 (Iny)2 3 y(Inyi )2] 2 BBB[ 2 (Iny,)2 2 f(ny1 )2]

a)BB 1t82 - + B 6 B2 3y

+ [y 12 _(lny) 2] + - B 6B linYyil8nyJ

2 39 2'
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+ c6, -7 3 B -
D8 5 LYo ":Yo -Yi 0 1 2 1 0Y 2'Y -Yi -,,Yi

- 4 -, 2
+ CD86 y y- y CDBF Y

12Lo- ?Y y + B .0 B y>;(y/y. L B-2331

1 2 1

C89=- B 2 Fs + -L BoF2 (B-234)
2 1 45 36 0 26

CD9 0  2 1 46 0 45 (B-235)

CD9  lB2F + 1 -CD9 B 2 F4 + 2-oB F (B-236)
12 1 4 9 0 283

D92 21 0 0 46 (8-237)
1 2

CDg 3 = -BF 1 + BoF4  (B-238)

1 2 1

CD9 4 :" B2F + - B2F (B-239)
D4 12 1 36 4 232

C 1 B F + -- BoF (B-240)
D5 2 2 30 6 0 36

C lB2 F + LB6F(B21
D96 8 1 32 16 2 33 (8-241)

CD9 7  
1 82F + B2F + BoF (B-242)49 1 30 2 48 4 0 32

CD =B F + - BoF3 (B-243)

c B2F + B (B-244)
D9 32 1 3.13 + 36 B2 2 6

:12
C 1  BF 2 BF +LB F (B-245)D00 2 1 F48 + 2 45 16 0 33

12
CD10 , -BF 35+' F 28(B-246)

Co = B2F + BF + BoF (B-247)I

I
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C oD1 0 3  B2 F4 7 +BF (B-248)

CD10 4 =B2FO + BOF38 (B-249)

c Ic 1 C (R-250)
Di05 8 CD89 - CD99

c 1 1 (B-251)
CD1 0 6 - 6 D90 108 CD9 6  36 DI00(

c =Ic - B22
D107 5 D91 25 DIO(B-252)

C 1 1_+ 1 3 C (B-253)4D08 D92 32 D97 16 D102 - 1 D94

c = c + LB F 1c(B-2 54)D109 3 D93 27 2 35 9 D103

CD 1  BF i-' 3 1F 1 (B-255)
D 2 0 8 2 36 CD95 CD98 - - CD104

CD1 1  =BoF 3 1 - B 2F3 1  (B-256)

C _j- c 1BF (B-257)
D1 2 CD95 6 2 36

C Ic 3 - c (B-258)

D113 4 D97 16 D94

CD 14  4B2F 3"C +- C (B-259)
D14 4 2 36 4 D95 2 D98

c 1 c L (B-260)
CD 1 1 5  -CDIOO 18 D96

D l16 1 l9 + (B-261)CD16 4 102 8 D 32 D94

1  C BF (B-262)
CD17 -3 D103 9 2 35

CD118  CD -4 B F -iC + C (B-263)4 2 36 2 D98 2 D104

I
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ii
2'-8 10' 10' +BI 2 7

CD 2 62 F2 Iy°  "Yi 
+ CD O F 7 - B

720 1 26o i i C 1 0 YoY i + 28 YB F Y

I 6 6) 5 5s 4_ 4')
D106 o + C 0 yo + CD f08 4 ) + C Y, -Y

14 + C +L B~ F6 ),2 (:}- y f:,y

10 Y. "Yi oI I ( Y. -Yi 12 Y2 36L (, 'I I 1-y,

I cj ly4[".y) Z: F2 (l~y 3 - y 2 13-

3 C 2 o o' i + CDI 1 Y

+ 8 8 6

9 1 Di I 2 D 1 } 0  Y _ 1 }

CrF y3 -y, Zny, + CD, I a 1  (B-265)y2(>2y2

+ B2 I [y n-y, 2ny, (8-264

I 98 0993 0 0 2 1 D1Lo

Cm~ 2D 0a + 2B 2 (8-266)

DI~~ 00 000

c 620 + 102 (8-267)
I 1 82 613 r2

01 20 2 0 1 1 (8-268)D1 2C B2, + f 1 14 (8-26 7)
2 1 4J C0,22 =28202o 2 016D~ (8-268)

2820 + 0 2 (8-269)

D1m2 3 2 0 16

D124  8 + 14D20 (B-270)

C125 20-1620 DD 14 (C =2s = 2Do~ + PD4(B-271)

{

, {
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VI 26 64 13D20 - 2048 D1314 (B-272)

2 C19 + Di19 CDI2 1  - 36 DI24 (B-273)c DI 28 
31B

D128 50 '1 1 14 5 1 20 (B-274)
c 1 3 B 2 1 C
D1329 4 D120 - 56 0 -14 32 D122 - 16 CDI25 (8-275)

CDI3 ° 2 B 016 - 23 B1 0 7- 7B 112 (B-276)
1 2 3 4 3 2 7

D D 4 0 2 B 2 6 + CD 12  - D DD0 (B-277)

CDi 32  BD - B 
(8-278)2 3 2

D13 4 CD122 - 3 B2 2D14 (B-279)
0D,34 -2B B 20 + 1 (8-280)

c4_ 3 B1D3 2 2 2 2 16 2 D123(B20

CD1 3 5 6 D124 18 CD121 
(B-281)

S3 B2
D16 64 2 14 8CDl2 2  4D125 (B-282)

C 1 BIB 2 3 B D 16 
(B-283)

3B2 3 1
D38 2216 2 2 2D123 0 16 (8-284)

CD33  1 2(0 1) + C0,D 26 yo- - 56 .y

+ c 6_6j (y5_5j ( 4_4) 3_ 3D1
D1 27 0oiJ + CDI 28 . Y, 1 + CDI 29 ~y 0y I+cD J0(.Y

+ DI 3 1 0(yi2 + '2B Y.(Zny) Y- y(Zny4

8+ 14 0 Y447 ny}] + C D1 3 2 Lo Ilny, y j Z Y(ny, 3]°'" -'>',I'
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-Y Y 2 + C D13 3 y 2 62y4
2  4 y i 2

6 D 2 14 o Y. -Y i y :Yi C D 1 3'Y 3 Y y 0 :Y . I

y , (:,:Y,- T0 Bl 1DLy3KcYo-Y [ Yi~: + c36 i r>Yo-Yiy
2
(:Yi 2

1._ 
o .

] 0 8 82]6

iy B: - y r y i:y

256 130 2 +o
+ o D +  +CD134 -y0

8 6

C 1 D D Boi(B+ C -68)

2 3 1136 L

374 =BB + vy +C 128L01zy-. y (8-285)

1 4 1

C0149 B0DI -B (8-286)
CDTo " I B l D+ 4 i2D -l4 z + 2D 13 6 0 'o_ :

4 2 L1 0 1 13

14 2 12 2C I B2DI +BD + B B (B-286)

CD 4  = BD + BB2D + LoB2  (B-287)

c B B 2 (B-288)

C 4 B T6 B l +  B B (D289
23 1, 2 }BBD 82

D142 1 2 4 2 14(-29

8 B 2 + 2BB 3  (B-290)

CD4 = B 4 Bo + -1BB D +L Do BD4 (B-291)

D144 4 12 4 1 2 14 16 2 13(-21

cB2 BD +B2 D oB2 B2 1 622
D15 1216 2 20 01 2 2 0 2 14(-22

C0 4  B 2D + 2B680 +B B 2(B-293)
D16 2 0 0 2 16 0 2

C D +BB(B-29)
D147 16 1 14 16 1 2 13(-24

2 2 12

16 2B 20 4 1 4 (8-296)
CD149 1BB +80 +28 0 2+2-4B1

C =2B BD +B 2D (B-297)
DIS0 0 2 0 0 16

r1

.Ih
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c 1 (B-298)
CD1 5 1  8 D139 64 D147

C1 - 1 (B-299)

D152 6 D140 108 D144 36 D148

c 1 B 1 3 (B-300)
D153 =2-5B 1B - 1 B1B

L 3 + 3 I (B-301)

D154 4 D141 - 128 D142 32 D145 16 D149

CD155 = BBBB - - BB - 2 BB2 (B-302)

D15 9 1 0 1 2 3 1 0 1 27 1 1

1 2 34 _3 1C BOD +- B (B-33)
D156 0 4 2 8 D143 4 D146 154 D150

C 1  -B 4  (B-304)
D157 2 D143 2

1 c3 C12(B-305)

CD158 4 D145 16D42(-35

CD15 9  -2 c +I CD146 (B-306)

C 6  C - -- C (B-307)
D106 D148 18 D144

c L 1 + c (B-308)
D161 32 D142 8 D145 4 D149

CD16 2 : B BBBB 2 6 B BBB (8-309)
916 61 1 2 3 1 0 1 2

c -B43  + 1 c (B-310)
D163 11CD143 - 2 -2D146 2 D150

+C D152 tYYi} + C D153 YO y I + C D154 tYO- 1 + 150

+ Y. _ 6r_2_4 c [3_

D156 YO + ) 2 B y2 YY] - y 1 4]

D142- Yi+ c 157 oIY
[ Zyo3 4(zy 3
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1 1F, 2 36 )2 4 2
Iy~ryt -y':y.

3 D144 01 L( Yi 158 o o y, ,

2D4  L[B  3 7:Yo Yi 3 ", ,:Yi C 1 2 2 2yY" -3c 2, oYC1 ,o,

1 1;B3
2 LO Y0  5y 9~j+C1 1 L i:y

+ c y. Y :,y + C (8-16
1 66

1 i D160 ':Yo : -1Yi

- 5 3- 5 B + o B+Bo - 4 4Y
1 2 1 YoYy i  + C D161 (y8--Y3 "3Y

1 3 22

CD166 =LyB - "'B.B- i B 828 - 2 BD13 0 BB i(-3

CD 4 T' BoBI 6 B6 B (B-312)

2D 64 2 16 0 1 2188 1 2(-34
C 6 B 4" BB4 + 1-B 4B 2 - 1 Bo B B-33

15 4 3 3 2 2 2 3
Cm6 Bo BI 2 _ 3 6B3B + L BoB 2B 2  3 B 2oB 2B (B-314)

CD16 7  2 Bo I- 2 2BB2  +-BB oB2 (B-315)

3 4

CD1 68  :2BoB2 -B 2  (B-316)

3 2 2 3 2 3

C169 2 0 1 2 8 (B-317)

_34 3 22

c o I B - 3BoB3 + 3BoB 2  (B-318)2 2 02 0 2

C0  = B B4B 1 8B2 (B-319)

D2 061 2 1 2 1213 3 4 2 22C1,2 =I'6 8 1 8 2 - 4" B1 B2 +2 BoB1 B2  (8-320)

C0 7  = 3BoB _ B - 3BB + 2B3B (B-321)

3 : [j265y+2}L B8( "i + CD164 Y-Y
! D35 0 Yo 0o 6 o i 0 6

4_ 41 (,:-2 I _Y1+ [, 2 (io 4' 2: '
+ C V1 6 6 (YO Y} + C0D167 0 + ~.B2 jny) y (Inv )4]

'

7

IF-
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1 2 3 -4 2, 3 2' :y
yo -3 y + c y+ 2 2 I j D168 oLYoI -

4+2BBLY6 2j Y6 y ) 2 4 CD26 4,. 2

+ 2 (, 2  2 6 + 8 1 2 L -

L)170 Y 16 16 2 8

6 6 4 4 .
+ CDl ?LY' -Y, - y + CD 2 Lr0 0  YAYj

C [ 2 , (B-322)

Y ' yDI 73 ' y i (-32
C C + C + c +~ (8-323)

CiD3 = IN 0 + CD31 + CD32 + CD33 + CD34 CD35

Having determined the (u1,v), (u2,v2 ), and (u3,v ) velocity components

as well as the discharge coefficient constants CD1, CD2, and CD3 ' the important

flowfield variables may then be evaluated. The series expansions for these

quantities are given in Chapter III and are included here for completeness,
2 3

u(z,y) = 1 + D = 1 + uI  + u2E + u3 E + ... (B-324)

v(z,y) = = lt-J : 1v 6 + v2 E
2 + v3C

3 + ... (B-325)

M*(z,y) = u2+ v2 1 1/2 = 1 + u I + u 2 + u3+ i 32413 + ...(6-326)

e(z,y) = tan - (v/u) : 2 E][ I E + (v 2 =uIvi> 2

{ fv--v-uv 1 uv 'c + .] (B-327)

M~zy)= 1- jM*2'] , ( ]ri + [u2,+ 4- (Y'l)u:]E2(B38

I

'' ~~~-- M 2 1/2...-,r -. .. 
.Y~l 1 3 2

M(Z9) 1 [ ± E + (-1)U1]
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(z'Y) = - i}M*2j Y( -l) -T(¥-)U F + u2 2

4Zy y~l 3)3I 2

+ +l V2 U 6 U 1 
-  ..- (B-329)

.JC - ( y + l ) 2  1c 6 1.(

C2 =I _ _Y E2 DI + C 
+  

CD F3 
2  +  

,. .(B-330)

D 2 2 LDI D2 D3
Yo -Yi

While the preceding list of constants and functions looks quite

formidable, it is to be noted that for a given configuration the constants

need be evaluated just once. Only z and the functions of y must be

determined for each point in the flowfield.

' Ir
L
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APPENDIX C. SOLUTION SUMMARY FOR THE CONVENTIONAL
AXISYMMETRIC CONFIGURATION

For the special case of an axisymmetric nozzle without a centerbody,

the parameters which are to be specified are: y, the ratio of specific

heats; R , the wall radius of curvature non-dimensionalized with respect
C

to the throat radius; N, the number of terms in the series solution to be

employed; and n the parameter in the expansion variable,

c (Rc+nl-' (C-l)

With these quantities given, the perturbation velocity components and the

discharge coefficient constants for the first three solution orders may be

evaluated from,

u1 (z,y) 1 y - I+ Z (C-2)
-

v(zy) = y - Iy + yz (C-3)

u (ZY) 2y+9 Y4 4Y+l5-12n y2  1 OY+57-72T+ 2 + -5l
2 (  =24 4 y +24 288 + y +

- y-3z2 (C-4)

v2(z,y) = x2 y5 20¥+63-36n y3 28y+93- 1 0 8 n y

2 j96 + 28

+ (2y+9 3 y z + yz (C-5)

2 2
556y +1737y+3069 y6 388y +(l161-384 )y+(1881-1728n) 4

u3 (zy) 10,368 -2304

+ 304y2+(831-576n)y+(1242-2160n+864n 2 ) 2+ 1728 y

2708y2 +(7839-5760 )y+(14,211-32,832n+20,7 361 2 )
82,944

&TND

-.. -~Aft
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52y 2 +51-y+327 4 5 2 +75y+( 279-28 8ri) 2
+ 384 -7 192

92-y2 +180y+(639-18Ol+432 n2)] C6

+ 7-3 2 +(13-16n)h-(27-24r-)lz 2 + LL~ +27iz3

v (z,y) 6836y2+23,031-,+30,627 Y7
3 82,944

-3380_Y2 +(11,39l-3840n)-y+(15,29 1-11, 520ni) 5

13,824

+ 3424y 2+(11,271-72O00j)y+(15,228-22,680+648Oi
2) Y3

13,824

-7100y 2+( 22,311-2O,16Oi)-y+(3O,249-66,960n+38,88On12 )
82,944

+ _556y_2__7371_069_ 388y 2 +(1161-384nh +(1881-1728n) y3
+ L 728~Y36 ys 576

+304_Y2 +(831-576rl)y(1242-2160n+864 r2) jz (C-7)

5 [2'Y2 +51y+327 3 _ 522 75y+( 279-288 T)) + [ 3 Y]Z

l 96 (C- 8)

CD -
8y+2

21-48r (C-9)

D2 2304

CD 754y +(1971-2880i)-y+(2007-7560n)+8640n2) (C-10)
D3 276,480

The quantities u, v, M*, 8, M, p/p0, and CD can then be determined from

Eqs. (111-73)-(1I1-78) and (111-80), respectively.
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The resulting solution is applicable to axisynmmetric nozzles with either

circular, parabolic, elliptic, or hyperbolic arc wall contours. It should

also be noted that the expansion parameter employed here is ,- the one

obtained by simplifying the definition of used in the general solution,

Eq. (111-22), for the case of a straight inner wall. The latter procedure

results in the definition given in Eq. (111-82) which, because of the

presence of the coefficient 2, is somewhat less meaningful for the present

case than the one used in this appendix, Eq. (C-l). For general use, and

I particularly for nozzles with a small wall radius of curvature, the value

= 1 is recommended for the solution given above.

I
I
I
I
I

I

1L
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APPENDIX D. TABLES OF DATA, FIGS IV.11-IV.15

COM,PARISON OF FULL- AND HALF-SECTION WALL PRESSURE
MEASUREMENTS FOR AXISYMMETRIC NOZZLE, FIG. IV.]1

FULL-SECTION MODEL

p5 =350.3 kPa = 50.80 psia To 288.9 K = 520.0'R = 1.4 (air)

P mhober = 69.3 kPa = 10.06 psia Re2d = 2.68 x 106 d = 25.4 mm = 1.00 in.

Wall Pressure Ratios:

Tap No.J 1 2 3 14 5 I6J 7 8

Z -0.6 0.45 0.3 0.15 0.0 0.15 .0.3 0.45

R !1.2 1.107 01.046 1.0 111.000 1.011 t1.046 1.107

P/po 0.8756 0.7695 0.6565 0.5345.2884 0.1848 0.1217

HALF-SECTION MODEL

P 402.8 kPa = 58.42 psia To = 288.9 K = 520.0°R y = 1.4 (air)

6
P'hamber = 80.0 kPa = 11.60 psia Re2d = 3.09 x 10 d = 25.4 nn = 1.00 in.

Wall Pressure Ratios:

,Tap No. 1 2 3 4 5 6 7 8

-0.6 -0.45 -0.3 0.15 0.0 0.15 0.3 -0.45

R 1.2 1.107 1.046 1.011 1.000 1.011 1.046 1.107

P/p0  0.8735 0.7666 0.6572 0.5360 0.4087 0.2839 10.1811 0.1186

#j am BLAM NOT 11laD

Al
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